我想将数据框分成多列,以便可以看到summary()数据的每个子集的输出。
这是使用split()from 实现此目的的方法base:
library(tidyverse)
#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr
#> Loading tidyverse: dplyr
#> Conflicts with tidy packages ----------------------------------------------
#> filter(): dplyr, stats
#> lag(): dplyr, stats
mtcars %>%
select(1:3) %>%
mutate(GRP_A = sample(LETTERS[1:2], n(), replace = TRUE),
GRP_B = sample(c(1:2), n(), replace = TRUE)) %>%
split(list(.$GRP_A, .$GRP_B)) %>%
map(summary)
#> $A.1
#> mpg cyl disp GRP_A
#> Min. :10.40 Min. :4.0 Min. :108.0 Length:10
#> 1st Qu.:14.97 1st Qu.:4.5 1st Qu.:151.9 Class :character
#> Median :18.50 Median :7.0 Median :259.3 Mode :character
#> Mean :17.61 Mean :6.4 Mean :283.4
#> 3rd Qu.:20.85 3rd Qu.:8.0 3rd Qu.:430.0
#> Max. :24.40 Max. :8.0 Max. :472.0
#> GRP_B
#> Min. :1
#> 1st Qu.:1
#> Median :1
#> Mean :1
#> 3rd Qu.:1
#> Max. :1
#>
#> $B.1
#> mpg cyl disp GRP_A
#> Min. :15.00 Min. :4.0 Min. : 75.7 Length:5
#> 1st Qu.:21.00 1st Qu.:4.0 1st Qu.: 78.7 Class :character
#> Median :21.50 Median :4.0 Median :120.1 Mode :character
#> Mean :24.06 Mean :5.2 Mean :147.1
#> 3rd Qu.:30.40 3rd Qu.:6.0 3rd Qu.:160.0
#> Max. :32.40 Max. :8.0 Max. :301.0
#> GRP_B
#> Min. :1
#> 1st Qu.:1
#> Median :1
#> Mean :1
#> 3rd Qu.:1
#> Max. :1
#>
#> $A.2
#> mpg cyl disp GRP_A
#> Min. :15.20 Min. :4.000 Min. : 95.1 Length:9
#> 1st Qu.:16.40 1st Qu.:6.000 1st Qu.:160.0 Class :character
#> Median :18.10 Median :8.000 Median :275.8 Mode :character
#> Mean :19.84 Mean :6.667 Mean :234.0
#> 3rd Qu.:21.00 3rd Qu.:8.000 3rd Qu.:275.8
#> Max. :30.40 Max. :8.000 Max. :360.0
#> GRP_B
#> Min. :2
#> 1st Qu.:2
#> Median :2
#> Mean :2
#> 3rd Qu.:2
#> Max. :2
#>
#> $B.2
#> mpg cyl disp GRP_A
#> Min. :13.30 Min. :4 Min. : 71.1 Length:8
#> 1st Qu.:14.97 1st Qu.:4 1st Qu.:125.3 Class :character
#> Median :20.55 Median :6 Median :201.5 Mode :character
#> Mean :20.99 Mean :6 Mean :213.5
#> 3rd Qu.:23.93 3rd Qu.:8 3rd Qu.:315.5
#> Max. :33.90 Max. :8 Max. :360.0
#> GRP_B
#> Min. :2
#> 1st Qu.:2
#> Median :2
#> Mean :2
#> 3rd Qu.:2
#> Max. :2
Run Code Online (Sandbox Code Playgroud)
如何使用tidyverse动词达到相同的结果?我最初的想法是使用purrr::by_slice(),但显然已经弃用了。
dplyr 0.8.0 引入了您正在寻找的动词:group_split()
从文档中:
group_split() 的作用类似于base::split()但是
它使用 group_by() 中的分组结构,因此受数据掩码的约束
它不会根据分组命名列表的元素,因为这通常会丢失信息并且令人困惑。
group_keys()通过返回每个组一行和每个分组变量一列的数据帧来解释分组结构。
对于你的例子:
mtcars %>%
select(1:3) %>%
mutate(GRP_A = sample(LETTERS[1:2], n(), replace = TRUE),
GRP_B = sample(c(1:2), n(), replace = TRUE)) %>%
group_split(GRP_A, GRP_B) %>%
map(summary)
Run Code Online (Sandbox Code Playgroud)