Aya*_*lam 14 python numpy matrix-multiplication dot-product
我有2矩阵100kx200和200x100k如果它们是小矩阵我会使用numpy dot产品
sum(a.dot(b), axis = 0)
Run Code Online (Sandbox Code Playgroud)
但矩阵太大了,我也不能使用循环是否有一个聪明的方法来做到这一点?
ken*_*ytm 18
可能的优化是
>>> numpy.sum(a @ b, axis=0)
array([ 1.83633615, 18.71643672, 15.26981078, -46.33670382, 13.30276476])
>>> numpy.sum(a, axis=0) @ b
array([ 1.83633615, 18.71643672, 15.26981078, -46.33670382, 13.30276476])
Run Code Online (Sandbox Code Playgroud)
计算a @ b需要10k×200×10k的运算,而首先对行进行求和会将乘法运算减少到1×200×10k,从而提高了10k×.
这主要是由于认识到
numpy.sum(x, axis=0) == [1, 1, ..., 1] @ x
=> numpy.sum(a @ b, axis=0) == [1, 1, ..., 1] @ (a @ b)
== ([1, 1, ..., 1] @ a) @ b
== numpy.sum(a, axis=0) @ b
Run Code Online (Sandbox Code Playgroud)
与其他轴类似.
>>> numpy.sum(a @ b, axis=1)
array([ 2.8794171 , 9.12128399, 14.52009991, -8.70177811, -15.0303783 ])
>>> a @ numpy.sum(b, axis=1)
array([ 2.8794171 , 9.12128399, 14.52009991, -8.70177811, -15.0303783 ])
Run Code Online (Sandbox Code Playgroud)
(注:x @ y相当于x.dot(y)对二维矩阵和1D载体上的Python 3.5+与numpy的1.10.0+)
$ INITIALIZATION='import numpy;numpy.random.seed(0);a=numpy.random.randn(1000,200);b=numpy.random.rand(200,1000)'
$ python3 -m timeit -s "$INITIALIZATION" 'numpy.einsum("ij,jk->k", a, b)'
10 loops, best of 3: 87.2 msec per loop
$ python3 -m timeit -s "$INITIALIZATION" 'numpy.sum(a@b, axis=0)'
100 loops, best of 3: 12.8 msec per loop
$ python3 -m timeit -s "$INITIALIZATION" 'numpy.sum(a, axis=0)@b'
1000 loops, best of 3: 300 usec per loop
Run Code Online (Sandbox Code Playgroud)
插图:
In [235]: a = np.random.rand(3,3)
array([[ 0.465, 0.758, 0.641],
[ 0.897, 0.673, 0.742],
[ 0.763, 0.274, 0.485]])
In [237]: b = np.random.rand(3,2)
array([[ 0.303, 0.378],
[ 0.039, 0.095],
[ 0.192, 0.668]])
Run Code Online (Sandbox Code Playgroud)
现在,如果我们这样做a @ b,我们需要18个乘法运算和6个加法运算.另一方面,如果我们这样做,np.sum(a, axis=0) @ b我们只需要6次乘法运算和2次加法运算.由于我们有3行,因此提高了3倍a.至于OP的情况,这应该比简单的a @ b计算提高10k倍,因为他有10k行a.
有两种sum-reductions情况发生 - 一种来自marix-multilication np.dot,然后是显式的sum.
我们可以np.einsum一次性使用这两种方法 - 就像这样 -
np.einsum('ij,jk->k',a,b)
Run Code Online (Sandbox Code Playgroud)
样品运行 -
In [27]: a = np.random.rand(3,4)
In [28]: b = np.random.rand(4,3)
In [29]: np.sum(a.dot(b), axis = 0)
Out[29]: array([ 2.70084316, 3.07448582, 3.28690401])
In [30]: np.einsum('ij,jk->k',a,b)
Out[30]: array([ 2.70084316, 3.07448582, 3.28690401])
Run Code Online (Sandbox Code Playgroud)
运行时测试 -
In [45]: a = np.random.rand(1000,200)
In [46]: b = np.random.rand(200,1000)
In [47]: %timeit np.sum(a.dot(b), axis = 0)
100 loops, best of 3: 5.5 ms per loop
In [48]: %timeit np.einsum('ij,jk->k',a,b)
10 loops, best of 3: 71.8 ms per loop
Run Code Online (Sandbox Code Playgroud)
可悲的是,看起来我们没有做得更好np.einsum.
要更改为np.sum(a.dot(b), axis = 1),只需在那里交换输出字符串表示法 - np.einsum('ij,jk->i',a,b)就像这样 -
In [42]: np.sum(a.dot(b), axis = 1)
Out[42]: array([ 3.97805141, 3.2249661 , 1.85921549])
In [43]: np.einsum('ij,jk->i',a,b)
Out[43]: array([ 3.97805141, 3.2249661 , 1.85921549])
Run Code Online (Sandbox Code Playgroud)