use*_*083 4 python similarity rdd pyspark
我有一个由包含概率分布的密集向量组成的 RDD,如下所示
[DenseVector([0.0806, 0.0751, 0.0786, 0.0753, 0.077, 0.0753, 0.0753, 0.0777, 0.0801, 0.0748, 0.0768, 0.0764, 0.0773]),
DenseVector([0.2252, 0.0422, 0.0864, 0.0441, 0.0592, 0.0439, 0.0433, 0.071, 0.1644, 0.0405, 0.0581, 0.0528, 0.0691]),
DenseVector([0.0806, 0.0751, 0.0786, 0.0753, 0.077, 0.0753, 0.0753, 0.0777, 0.0801, 0.0748, 0.0768, 0.0764, 0.0773]),
DenseVector([0.0924, 0.0699, 0.083, 0.0706, 0.0766, 0.0708, 0.0705, 0.0793, 0.09, 0.0689, 0.0758, 0.0743, 0.0779]),
DenseVector([0.0806, 0.0751, 0.0785, 0.0753, 0.077, 0.0753, 0.0753, 0.0777, 0.0801, 0.0748, 0.0768, 0.0764, 0.0773]),
DenseVector([0.0806, 0.0751, 0.0786, 0.0753, 0.077, 0.0753, 0.0753, 0.0777, 0.0801, 0.0748, 0.0768, 0.0764, 0.0773])
Run Code Online (Sandbox Code Playgroud)
我想计算一个向量和所有其他向量之间的相似性,并将结果存储在一个矩阵中。
我可以将完整的 RDD 转换为矩阵,然后取每一行并计算与所有其他行的距离。我想知道是否有更有效的方法来使用 pyspark RDD 方法来做到这一点。
据我所知,没有用于在行之间进行余弦相似度的函数。所以你必须有点棘手才能到达你想要的地方。
首先使用 以列格式创建行对rdd.cartesian(rdd)
,这会将所有行成对地相互匹配。接下来,您需要定义一个余弦相似度函数并将其映射到 rdd 上。最后,将结果转换为 np.array 并重塑为 6x6。
例子:
def cos_sim(row):
dot_product = row[0].dot(row[1])
norm_a = np.sqrt(np.sum(row[0] * row[0]))
norm_b = np.sqrt(np.sum(row[1] * row[1]))
sim = dot_product / (norm_a * norm_b)
return sim
rdd2 = rdd.cartesian(rdd)
cosine_similarities = rdd2.map(lambda x: cos_sim(x)).collect()
cosine_similariteis = np.array(cosine_similarities).reshape((6,6))
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2260 次 |
最近记录: |