Keras-弹出并重新添加图层,但图层不会断开连接

Béa*_*nac 5 python deep-learning keras keras-layer

使用Keras(1.2.2),我正在加载一个序列模型,其最后一层是:

model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
Run Code Online (Sandbox Code Playgroud)

然后,我要弹出最后一层,添加另一个完全连接的层,然后重新添加分类层。

model = load_model('model1.h5')                                                                         
layer1 = model.layers.pop() # Copy activation_6 layer                                      
layer2 = model.layers.pop() # Copy classification layer (dense_2)                          

model.add(Dense(512, name='dense_3'))
model.add(Activation('softmax', name='activation_7'))

model.add(layer2)
model.add(layer1)

print(model.summary())
Run Code Online (Sandbox Code Playgroud)

如您所见,我的density_3和activation_7没有连接到网络(summary()中带有“ Connected to”的空值)。我在文档中找不到任何说明如何解决此问题的信息。有任何想法吗?

dense_1 (Dense)                  (None, 512)           131584      flatten_1[0][0]                  
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 512)           0           dense_1[0][0]                    
____________________________________________________________________________________________________
dense_3 (Dense)                  (None, 512)           5632                                         
____________________________________________________________________________________________________
activation_7 (Activation)        (None, 512)           0                                            
____________________________________________________________________________________________________
dense_2 (Dense)                  (None, 10)            5130        activation_5[0][0]               
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 10)            0           dense_2[0][0]                    
====================================================================================================
Run Code Online (Sandbox Code Playgroud)

按照下面的答案,我在打印出来之前先编译了模型model.summary(),但是由于某些原因,图层未正确弹出,如摘要所示:最后一层的连接错误:

dense_1 (Dense)                  (None, 512)           131584      flatten_1[0][0]                  
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 512)           0           dense_1[0][0]                    
____________________________________________________________________________________________________
dense_3 (Dense)                  (None, 512)           5632        activation_6[0][0]               
____________________________________________________________________________________________________
activation_7 (Activation)        (None, 512)           0           dense_3[0][0]                    
____________________________________________________________________________________________________
dense_2 (Dense)                  (None, 10)            5130        activation_5[0][0]               
                                                                   activation_7[0][0]               
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 10)            0           dense_2[0][0]                    
                                                                   dense_2[1][0]                    
====================================================================================================
Run Code Online (Sandbox Code Playgroud)

但这应该是

dense_1 (Dense)                  (None, 512)           131584      flatten_1[0][0]                  
____________________________________________________________________________________________________
activation_5 (Activation)        (None, 512)           0           dense_1[0][0]                    
____________________________________________________________________________________________________
dense_3 (Dense)                  (None, 512)           5632        activation_5[0][0]               
____________________________________________________________________________________________________
activation_7 (Activation)        (None, 512)           0           dense_3[0][0]                    
____________________________________________________________________________________________________
dense_2 (Dense)                  (None, 10)            5130                       
                                                                   activation_7[0][0]               
____________________________________________________________________________________________________
activation_6 (Activation)        (None, 10)            0           dense_2[0][0]                    

====================================================================================================
Run Code Online (Sandbox Code Playgroud)

Nas*_*Ben 5

当您删除图层时,您需要重新编译您的模型才能使其产生任何效果。

所以用

model.compile(loss=...,optimizer=..., ...)
Run Code Online (Sandbox Code Playgroud)

在打印摘要之前,它应该正确集成更改。

编辑 :

对于顺序模式,您尝试做的实际上非常复杂。这是我可以为您的 Sequential 模型提出的解决方案(如果有更好的请告诉我):

model = load_model('model1.h5')                                                                         
layer1 = model.layers.pop() # Copy activation_6 layer                                      
layer2 = model.layers.pop() # Copy classification layer (dense_2)                          

model.add(Dense(512, name='dense_3'))
model.add(Activation('softmax', name='activation_7'))

# get layer1 config
layer1_config = layer1.get_config()
layer2_config = layer2.get_config()
# change the name of the layers otherwise it complains
layer1_config['name'] = layer1_config['name'] + '_new'
layer2_config['name'] = layer2_config['name'] + '_new'

# import the magic function
from keras.utils.layer_utils import layer_from_config
# re-add new layers from the config of the old ones 
model.add(layer_from_config({'class_name':type(l2), 'config':layer2_config}))
model.add(layer_from_config({'class_name':type(l1), 'config':layer1_config}))

model.compile(...)

print(model.summary())
Run Code Online (Sandbox Code Playgroud)

该黑客是一个事实,即你的层具有layer1.inputlayer1.output性质,我不能改变。

一种解决方法是使用 Functionnal API 模型。这允许您定义进入和离开图层的内容。

首先,您需要定义 pop() 函数,以便在每次弹出图层时正确重新链接图层,该函数来自这个 github 问题

def pop_layer(model):
    if not model.outputs:
        raise Exception('Sequential model cannot be popped: model is empty.')

    popped_layer = model.layers.pop()
    if not model.layers:
        model.outputs = []
        model.inbound_nodes = []
        model.outbound_nodes = []
    else:
        model.layers[-1].outbound_nodes = []
        model.outputs = [model.layers[-1].output]
    model.built = False
    return popped_layer
Run Code Online (Sandbox Code Playgroud)

它只是删除最后一层的每个输出链接,并将模型的输出更改为新的最后一层。现在你可以在:

model = load_model('model1.h5')                                                                         
layer1 = model.layers.pop() # Copy activation_6 layer                                      
layer2 = model.layers.pop() # Copy classification layer (dense_2)     

# take model.outputs and feed a Dense layer
h = Dense(512,name='dense_3')(model.outputs)
h = Activation('relu', name=('activation_7')(h)
# apply
h = layer2(h)
output = layer1(h)

model = Model(input=model.input, output=output)
model.compile(...)
model.summary()
Run Code Online (Sandbox Code Playgroud)

可能有比这更好的解决方案,但这就是我要做的。

我希望这有帮助。