Béa*_*nac 5 python deep-learning keras keras-layer
使用Keras(1.2.2),我正在加载一个序列模型,其最后一层是:
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
Run Code Online (Sandbox Code Playgroud)
然后,我要弹出最后一层,添加另一个完全连接的层,然后重新添加分类层。
model = load_model('model1.h5')
layer1 = model.layers.pop() # Copy activation_6 layer
layer2 = model.layers.pop() # Copy classification layer (dense_2)
model.add(Dense(512, name='dense_3'))
model.add(Activation('softmax', name='activation_7'))
model.add(layer2)
model.add(layer1)
print(model.summary())
Run Code Online (Sandbox Code Playgroud)
如您所见,我的density_3和activation_7没有连接到网络(summary()中带有“ Connected to”的空值)。我在文档中找不到任何说明如何解决此问题的信息。有任何想法吗?
dense_1 (Dense) (None, 512) 131584 flatten_1[0][0]
____________________________________________________________________________________________________
activation_5 (Activation) (None, 512) 0 dense_1[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 512) 5632
____________________________________________________________________________________________________
activation_7 (Activation) (None, 512) 0
____________________________________________________________________________________________________
dense_2 (Dense) (None, 10) 5130 activation_5[0][0]
____________________________________________________________________________________________________
activation_6 (Activation) (None, 10) 0 dense_2[0][0]
====================================================================================================
Run Code Online (Sandbox Code Playgroud)
按照下面的答案,我在打印出来之前先编译了模型model.summary(),但是由于某些原因,图层未正确弹出,如摘要所示:最后一层的连接错误:
dense_1 (Dense) (None, 512) 131584 flatten_1[0][0]
____________________________________________________________________________________________________
activation_5 (Activation) (None, 512) 0 dense_1[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 512) 5632 activation_6[0][0]
____________________________________________________________________________________________________
activation_7 (Activation) (None, 512) 0 dense_3[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 10) 5130 activation_5[0][0]
activation_7[0][0]
____________________________________________________________________________________________________
activation_6 (Activation) (None, 10) 0 dense_2[0][0]
dense_2[1][0]
====================================================================================================
Run Code Online (Sandbox Code Playgroud)
但这应该是
dense_1 (Dense) (None, 512) 131584 flatten_1[0][0]
____________________________________________________________________________________________________
activation_5 (Activation) (None, 512) 0 dense_1[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 512) 5632 activation_5[0][0]
____________________________________________________________________________________________________
activation_7 (Activation) (None, 512) 0 dense_3[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 10) 5130
activation_7[0][0]
____________________________________________________________________________________________________
activation_6 (Activation) (None, 10) 0 dense_2[0][0]
====================================================================================================
Run Code Online (Sandbox Code Playgroud)
当您删除图层时,您需要重新编译您的模型才能使其产生任何效果。
所以用
model.compile(loss=...,optimizer=..., ...)
Run Code Online (Sandbox Code Playgroud)
在打印摘要之前,它应该正确集成更改。
编辑 :
对于顺序模式,您尝试做的实际上非常复杂。这是我可以为您的 Sequential 模型提出的解决方案(如果有更好的请告诉我):
model = load_model('model1.h5')
layer1 = model.layers.pop() # Copy activation_6 layer
layer2 = model.layers.pop() # Copy classification layer (dense_2)
model.add(Dense(512, name='dense_3'))
model.add(Activation('softmax', name='activation_7'))
# get layer1 config
layer1_config = layer1.get_config()
layer2_config = layer2.get_config()
# change the name of the layers otherwise it complains
layer1_config['name'] = layer1_config['name'] + '_new'
layer2_config['name'] = layer2_config['name'] + '_new'
# import the magic function
from keras.utils.layer_utils import layer_from_config
# re-add new layers from the config of the old ones
model.add(layer_from_config({'class_name':type(l2), 'config':layer2_config}))
model.add(layer_from_config({'class_name':type(l1), 'config':layer1_config}))
model.compile(...)
print(model.summary())
Run Code Online (Sandbox Code Playgroud)
该黑客是一个事实,即你的层具有layer1.input和layer1.output性质,我不能改变。
一种解决方法是使用 Functionnal API 模型。这允许您定义进入和离开图层的内容。
首先,您需要定义 pop() 函数,以便在每次弹出图层时正确重新链接图层,该函数来自这个 github 问题:
def pop_layer(model):
if not model.outputs:
raise Exception('Sequential model cannot be popped: model is empty.')
popped_layer = model.layers.pop()
if not model.layers:
model.outputs = []
model.inbound_nodes = []
model.outbound_nodes = []
else:
model.layers[-1].outbound_nodes = []
model.outputs = [model.layers[-1].output]
model.built = False
return popped_layer
Run Code Online (Sandbox Code Playgroud)
它只是删除最后一层的每个输出链接,并将模型的输出更改为新的最后一层。现在你可以在:
model = load_model('model1.h5')
layer1 = model.layers.pop() # Copy activation_6 layer
layer2 = model.layers.pop() # Copy classification layer (dense_2)
# take model.outputs and feed a Dense layer
h = Dense(512,name='dense_3')(model.outputs)
h = Activation('relu', name=('activation_7')(h)
# apply
h = layer2(h)
output = layer1(h)
model = Model(input=model.input, output=output)
model.compile(...)
model.summary()
Run Code Online (Sandbox Code Playgroud)
可能有比这更好的解决方案,但这就是我要做的。
我希望这有帮助。
| 归档时间: |
|
| 查看次数: |
3852 次 |
| 最近记录: |