Tensorflow 中占位符的形状

gui*_*g10 0 input conv-neural-network tensorflow

我在短时间内使用 Tensorflow。这是我的问题:我加载 AlexNet 权重以对其进行微调,所以我给出了 50 的批次。所以我定义了:

# Graph input
x = tf.placeholder(tf.float32, [50, 227, 227, 3])
y = tf.placeholder(tf.float32, [None, 40])
Run Code Online (Sandbox Code Playgroud)

我给出了一批 50 张图像,并希望获得 40 个输出类。

然后我定义了我的模型

class Model:
@staticmethod 
def alexnet(_X, _dropout):
    # Layer 1 (conv-relu-pool-lrn)
    conv1 = conv(_X, 11, 11, 96, 4, 4, padding='VALID', name='conv1')
    conv1 = max_pool(conv1, 3, 3, 2, 2, padding='VALID', name='pool1')
    norm1 = lrn(conv1, 2, 2e-05, 0.75, name='norm1')
    # Layer 2 (conv-relu-pool-lrn)
    conv2 = conv(norm1, 5, 5, 256, 1, 1, group=2, name='conv2')
    conv2 = max_pool(conv2, 3, 3, 2, 2, padding='VALID', name='pool2')
    norm2 = lrn(conv2, 2, 2e-05, 0.75, name='norm2')
    # Layer 3 (conv-relu)
    conv3 = conv(norm2, 3, 3, 384, 1, 1, name='conv3')
    # Layer 4 (conv-relu)
    conv4 = conv(conv3, 3, 3, 384, 1, 1, group=2, name='conv4')
    # Layer 5 (conv-relu-pool)
    conv5 = conv(conv4, 3, 3, 256, 1, 1, group=2, name='conv5')
    pool5 = max_pool(conv5, 3, 3, 2, 2, padding='VALID', name='pool5')
    # Layer 6 (fc-relu-drop)
    fc6 = tf.reshape(pool5, [-1, 6*6*256])
    fc6 = fc(fc6, 6*6*256, 4096, name='fc6')
    fc6 = dropout(fc6, _dropout)
    # Layer 7 (fc-relu-drop)
    fc7 = fc(fc6, 4096, 4096, name='fc7')
    fc7 = dropout(fc7, _dropout)
    # Layer 8 (fc-prob)
    fc8 = fc(fc7, 4096, 40, relu=False, name='fc8')
    return fc8 # fc8 and fc7 (for transfer-learning)
Run Code Online (Sandbox Code Playgroud)

并创建它

keep_var = tf.placeholder(tf.float32)

# Model
pred = Model.alexnet(x, keep_var)  
Run Code Online (Sandbox Code Playgroud)

我可以进行培训,效果很好,但最后,我只想给出一张图像,但是 x 占位符和 y 占位符是为 50 张图像定义的,因此会引发错误。这是我在训练后只给出一张图像的代码:

    x_test = tf.placeholder(tf.float32, [1, 227, 227, 3])
    y_test = tf.placeholder(tf.float32, [None, 40])
    img = loaded_img_train[0][:][:][:] # Only one image
    label = loaded_lab_train[0][:] # Only one label
    prediction = sess.run(pred, feed_dict={x_test: [img],     y_test: [label], keep_var: 1.})
Run Code Online (Sandbox Code Playgroud)

它引发了我这个错误:

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape [50,227,227,3]
 [[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[50,227,227,3], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Run Code Online (Sandbox Code Playgroud)

我不知道如何输入我想要的输入尺寸。

我的练习直接受到了 cnn 的花识别的启发

非常感谢你的帮助 !纪尧姆

use*_*670 5

您可以通过设置 None 而不是数字来为形状的第一个维度使用可变大小,而不是将形状的第一个维度设置为固定大小。Tensorflow 能够通过输入大小和形状其他维度的固定大小来计算批大小。

对于占位符 y,您已经正确:

y = tf.placeholder(tf.float32, [None, 40])
Run Code Online (Sandbox Code Playgroud)

对于占位符 x,您必须设置:

x = tf.placeholder(tf.float32, [None, 227, 227, 3])
Run Code Online (Sandbox Code Playgroud)