Rem*_*i.b 5 string parsing r pattern-matching
考虑以下因素
x = factor(c("1|1","1|0","1|1","1|1","0|0","1|1","0|1"))
Run Code Online (Sandbox Code Playgroud)
我想计算这个因素中字符"0"的出现次数.到目前为止我找到的唯一解决方案是
sum(grepl("0",strsplit(paste(sapply(x, as.character), collapse=""), split="")[[1]]))
# [1] 4
Run Code Online (Sandbox Code Playgroud)
对于这样一个简单的过程,这个解决方案似乎很复 有没有"更好"的选择?(由于该过程将在2000个元素长的因素上重复约100,000次,我可能最终也会关注性能.)
x = factor(c("1|1","1|0","1|1","1|1","0|0","1|1","0|1"))
x
# [1] 1|1 1|0 1|1 1|1 0|0 1|1 0|1
# Levels: 0|0 0|1 1|0 1|1
sum( unlist( lapply( strsplit(as.character(x), "|"), function( x ) length(grep( '0', x ))) ) )
# [1] 4
Run Code Online (Sandbox Code Playgroud)
要么
sum(nchar(gsub("[1 |]", '', x )))
# [1] 4
Run Code Online (Sandbox Code Playgroud)
基于@Rich Scriven的评论
sum(nchar(gsub("[^0]", '', x )))
# [1] 4
Run Code Online (Sandbox Code Playgroud)
根据@ thelatemail的评论 - 使用tabulate比上述解决方案更快的工作.这是比较.
sum(nchar(gsub("[^0]", "", levels(x) )) * tabulate(x))
Run Code Online (Sandbox Code Playgroud)
时间档案:
x2 <- sample(x,1e7,replace=TRUE)
system.time(sum(nchar(gsub("[^0]", '', x2 ))));
# user system elapsed
# 14.24 0.22 14.65
system.time(sum(nchar(gsub("[^0]", "", levels(x2) )) * tabulate(x2)));
# user system elapsed
# 0.04 0.00 0.04
system.time(sum(str_count(x2, fixed("0"))))
# user system elapsed
# 1.02 0.13 1.25
Run Code Online (Sandbox Code Playgroud)
这有三个选项.
选项1: scan()使用的向量sep="|"
sum(scan(text=as.character(x), sep="|") == 0)
# [1] 4
Run Code Online (Sandbox Code Playgroud)
选项2:固定字符gregexpr()
sum(unlist(gregexpr("0", x, fixed=TRUE)) > 0)
# [1] 4
Run Code Online (Sandbox Code Playgroud)
选项3:带有stringr的非常简单快速的打包选项
library(stringr)
sum(str_count(x, fixed("0")))
# [1] 4
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
83 次 |
| 最近记录: |