Ray*_*iaz 4 python numpy max multidimensional-array argmax
我有以下代码:
import numpy as np
sample = np.random.random((10,10,3))
argmax_indices = np.argmax(sample, axis=2)
Run Code Online (Sandbox Code Playgroud)
即我沿轴= 2取argmax,它给我一个(10,10)矩阵.现在,我想分配这些索引值0.为此,我想索引样本数组.我试过了:
max_values = sample[argmax_indices]
Run Code Online (Sandbox Code Playgroud)
但它不起作用.我想要类似的东西
max_values = sample[argmax_indices]
sample[argmax_indices] = 0
Run Code Online (Sandbox Code Playgroud)
我只是通过检查确定max_values - np.max(sample, axis=2)应该给出零形状矩阵(10,10)来验证.任何帮助将不胜感激.
这是一种方法 -
m,n = sample.shape[:2]
I,J = np.ogrid[:m,:n]
max_values = sample[I,J, argmax_indices]
sample[I,J, argmax_indices] = 0
Run Code Online (Sandbox Code Playgroud)
逐步运行示例
1)样本输入数组:
In [261]: a = np.random.randint(0,9,(2,2,3))
In [262]: a
Out[262]:
array([[[8, 4, 6],
[7, 6, 2]],
[[1, 8, 1],
[4, 6, 4]]])
Run Code Online (Sandbox Code Playgroud)
2)获取argmax指数axis=2:
In [263]: idx = a.argmax(axis=2)
Run Code Online (Sandbox Code Playgroud)
3)获取用于索引前两个dims的形状和数组:
In [264]: m,n = a.shape[:2]
In [265]: I,J = np.ogrid[:m,:n]
Run Code Online (Sandbox Code Playgroud)
4)使用I,J idx进行索引并使用以下方法存储最大值advanced-indexing:
In [267]: max_values = a[I,J,idx]
In [268]: max_values
Out[268]:
array([[8, 7],
[8, 6]])
Run Code Online (Sandbox Code Playgroud)
5)验证我们从zeros减去后得到一个全数组:np.max(a,axis=2)max_values
In [306]: max_values - np.max(a, axis=2)
Out[306]:
array([[0, 0],
[0, 0]])
Run Code Online (Sandbox Code Playgroud)
6)再次使用advanced-indexing将这些地点指定为zeros并进行更多级别的可视化验证:
In [269]: a[I,J,idx] = 0
In [270]: a
Out[270]:
array([[[0, 4, 6], # <=== Compare this against the original version
[0, 6, 2]],
[[1, 0, 1],
[4, 0, 4]]])
Run Code Online (Sandbox Code Playgroud)