给出两个圆圈:
x1,y1)withradius1x2,y2)有radius2你如何计算他们的交叉区域?当然,所有标准数学函数(sin,cos等)都可用.
Chr*_*ord 27
好吧,使用Wolfram链接和Misnomer的提示来查看等式14,我使用我列出的变量和中心之间的距离(可以简单地从它们派生)推导出以下Java解决方案:
Double r = radius1;
Double R = radius2;
Double d = distance;
if(R < r){
// swap
r = radius2;
R = radius1;
}
Double part1 = r*r*Math.acos((d*d + r*r - R*R)/(2*d*r));
Double part2 = R*R*Math.acos((d*d + R*R - r*r)/(2*d*R));
Double part3 = 0.5*Math.sqrt((-d+r+R)*(d+r-R)*(d-r+R)*(d+r+R));
Double intersectionArea = part1 + part2 - part3;
Run Code Online (Sandbox Code Playgroud)
Sco*_*ley 22
这是一个完全符合Chris之后的JavaScript函数:
function areaOfIntersection(x0, y0, r0, x1, y1, r1)
{
var rr0 = r0 * r0;
var rr1 = r1 * r1;
var d = Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
var phi = (Math.acos((rr0 + (d * d) - rr1) / (2 * r0 * d))) * 2;
var theta = (Math.acos((rr1 + (d * d) - rr0) / (2 * r1 * d))) * 2;
var area1 = 0.5 * theta * rr1 - 0.5 * rr1 * Math.sin(theta);
var area2 = 0.5 * phi * rr0 - 0.5 * rr0 * Math.sin(phi);
return area1 + area2;
}
Run Code Online (Sandbox Code Playgroud)
但是,如果一个圆圈完全位于另一个圆圈内,或者它们根本不接触,则此方法将返回NaN.在这些条件下不会失败的略有不同的版本如下:
function areaOfIntersection(x0, y0, r0, x1, y1, r1)
{
var rr0 = r0 * r0;
var rr1 = r1 * r1;
var d = Math.sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
// Circles do not overlap
if (d > r1 + r0)
{
return 0;
}
// Circle1 is completely inside circle0
else if (d <= Math.abs(r0 - r1) && r0 >= r1)
{
// Return area of circle1
return Math.PI * rr1;
}
// Circle0 is completely inside circle1
else if (d <= Math.abs(r0 - r1) && r0 < r1)
{
// Return area of circle0
return Math.PI * rr0;
}
// Circles partially overlap
else
{
var phi = (Math.acos((rr0 + (d * d) - rr1) / (2 * r0 * d))) * 2;
var theta = (Math.acos((rr1 + (d * d) - rr0) / (2 * r1 * d))) * 2;
var area1 = 0.5 * theta * rr1 - 0.5 * rr1 * Math.sin(theta);
var area2 = 0.5 * phi * rr0 - 0.5 * rr0 * Math.sin(phi);
// Return area of intersection
return area1 + area2;
}
}
Run Code Online (Sandbox Code Playgroud)
我通过阅读数学论坛上的信息来编写这个函数.我发现这比Wolfram MathWorld解释更清晰.
Vis*_*hal 11
您可能想要查看此分析解决方案并将公式与您的输入值一起应用.
这里给出另一个公式-
Area = r^2*(q - sin(q)) where q = 2*acos(c/2r),
where c = distance between centers and r is the common radius.
Run Code Online (Sandbox Code Playgroud)