如何使用 scikit-learn 创建我自己的数据集?

Yue*_* HU 7 python csv machine-learning scikit-learn

我想创建自己的数据集,并在 scikit-learn 中使用它。Scikit-learn 有一些数据集,如“波士顿住房数据集”(.csv),用户可以通过以下方式使用它:

from sklearn import datasets 
boston = datasets.load_boston()
Run Code Online (Sandbox Code Playgroud)

和下面的代码可以得到这个数据集的datatarget

X = boston.data
y = boston.target
Run Code Online (Sandbox Code Playgroud)

问题是如何创建我自己的数据集并可以以这种方式使用?任何答案表示赞赏,谢谢!

Ton*_*has 5

这是实现您的目的的一种快速而肮脏的方法:

my_datasets.py

import numpy as np
import csv
from sklearn.utils import Bunch

def load_my_fancy_dataset():
    with open(r'my_fancy_dataset.csv') as csv_file:
        data_reader = csv.reader(csv_file)
        feature_names = next(data_reader)[:-1]
        data = []
        target = []
        for row in data_reader:
            features = row[:-1]
            label = row[-1]
            data.append([float(num) for num in features])
            target.append(int(label))
        
        data = np.array(data)
        target = np.array(target)
    return Bunch(data=data, target=target, feature_names=feature_names)
Run Code Online (Sandbox Code Playgroud)

my_fancy_dataset.csv

feature_1,feature_2,feature_3,class_label
5.9,1203,0.69,2
7.2,902,0.52,0
6.3,143,0.44,1
-2.6,291,0.15,1
1.8,486,0.37,0
Run Code Online (Sandbox Code Playgroud)

演示

feature_1,feature_2,feature_3,class_label
5.9,1203,0.69,2
7.2,902,0.52,0
6.3,143,0.44,1
-2.6,291,0.15,1
1.8,486,0.37,0
Run Code Online (Sandbox Code Playgroud)