Aki*_*tos 7 python algorithm math subset subset-sum
我有2套,集合A包含一组随机数,而集合B的元素是集合A的子集的总和.
例如,
A = [8, 9, 15, 15, 33, 36, 39, 45, 46, 60, 68, 73, 80, 92, 96]
B = [183, 36, 231, 128, 137]
Run Code Online (Sandbox Code Playgroud)
我想找到哪个数字是哪个子集的总和与这样的数据.
S = [[45, 46, 92], [36], [8, 15, 39, 73, 96], [60, 68], [9, 15, 33, 80]]
Run Code Online (Sandbox Code Playgroud)
我能用python编写非常愚蠢的暴力代码.
class SolvedException(BaseException):
pass
def solve(sums, nums, answer):
num = nums[-1]
for i in range(0, len(sums)):
sumi = sums[i]
if sumi == 0:
continue
elif sumi - num < 0:
continue
answer[i].append(num)
sums[i] = sumi - num
if len(nums) != 1:
solve(sums, nums[:-1], answer)
elif sumi - num == 0:
raise SolvedException(answer)
sums[i] = sumi
answer[i].pop()
try:
solve(B, A, [list() for i in range(0, len(B))])
except SolvedException as e:
print e.args[0]
Run Code Online (Sandbox Code Playgroud)
这段代码适用于小型数据,但计算数据需要数十亿年(有71个数字和10个总和).
我可以使用一些更好的算法或优化.
抱歉,我的英文不好,代码也很糟糕.
编辑:对不起,我意识到我没有准确地描述问题.
由于每个元素A都用于制作B的元素,sum(A) == sum(B)
另外,set S 必须是 set的分区A.
hiv*_*ert 10
这被称为子集和问题,并且它是众所周知的NP完全问题.所以基本上没有有效的解决方案.例如,参见https://en.wikipedia.org/wiki/Subset_sum_problem
但是,如果您的数字N不是太大,则使用动态编程的伪多项式算法:您从左到右读取列表A并保留可行且小于N的总和列表.如果您知道该数字这对于给定的A是可行的,你可以很容易地得到那些对A + [a]可行的东西.因此动态编程.它通常足够快,可以解决您在那里出现的尺寸问题.
这是一个Python快速解决方案:
def subsetsum(A, N):
res = {0 : []}
for i in A:
newres = dict(res)
for v, l in res.items():
if v+i < N:
newres[v+i] = l+[i]
elif v+i == N:
return l+[i]
res = newres
return None
Run Code Online (Sandbox Code Playgroud)
然后
>>> A = [8, 9, 15, 15, 33, 36, 39, 45, 46, 60, 68, 73, 80, 92, 96]
>>> subsetsum(A, 183)
[15, 15, 33, 36, 39, 45]
Run Code Online (Sandbox Code Playgroud)
OP编辑后:
现在我正确地理解了你的问题,我仍然认为你的问题可以有效地解决,前提是你有一个有效的子集求解器:我在B上使用分而治之的解决方案:
但是,对于我建议的动态编程解决方案,下面的(71,10)问题是遥不可及的.
顺便说一句,这里是你的问题的快速解决方案,不使用分而治之,但它包含我的动态求解器的正确改编,以获得所有解决方案:
class NotFound(BaseException):
pass
from collections import defaultdict
def subset_all_sums(A, N):
res = defaultdict(set, {0 : {()}})
for nn, i in enumerate(A):
# perform a deep copy of res
newres = defaultdict(set)
for v, l in res.items():
newres[v] |= set(l)
for v, l in res.items():
if v+i <= N:
for s in l:
newres[v+i].add(s+(i,))
res = newres
return res[N]
def list_difference(l1, l2):
## Similar to merge.
res = []
i1 = 0; i2 = 0
while i1 < len(l1) and i2 < len(l2):
if l1[i1] == l2[i2]:
i1 += 1
i2 += 1
elif l1[i1] < l2[i2]:
res.append(l1[i1])
i1 += 1
else:
raise NotFound
while i1 < len(l1):
res.append(l1[i1])
i1 += 1
return res
def solve(A, B):
assert sum(A) == sum(B)
if not B:
return [[]]
res = []
ss = subset_all_sums(A, B[0])
for s in ss:
rem = list_difference(A, s)
for sol in solve(rem, B[1:]):
res.append([s]+sol)
return res
Run Code Online (Sandbox Code Playgroud)
然后:
>>> solve(A, B)
[[(15, 33, 39, 96), (36,), (8, 15, 60, 68, 80), (9, 46, 73), (45, 92)],
[(15, 33, 39, 96), (36,), (8, 9, 15, 46, 73, 80), (60, 68), (45, 92)],
[(8, 15, 15, 33, 39, 73), (36,), (9, 46, 80, 96), (60, 68), (45, 92)],
[(15, 15, 73, 80), (36,), (8, 9, 33, 39, 46, 96), (60, 68), (45, 92)],
[(15, 15, 73, 80), (36,), (9, 39, 45, 46, 92), (60, 68), (8, 33, 96)],
[(8, 33, 46, 96), (36,), (9, 15, 15, 39, 73, 80), (60, 68), (45, 92)],
[(8, 33, 46, 96), (36,), (15, 15, 60, 68, 73), (9, 39, 80), (45, 92)],
[(9, 15, 33, 46, 80), (36,), (8, 15, 39, 73, 96), (60, 68), (45, 92)],
[(45, 46, 92), (36,), (8, 15, 39, 73, 96), (60, 68), (9, 15, 33, 80)],
[(45, 46, 92), (36,), (8, 15, 39, 73, 96), (15, 33, 80), (9, 60, 68)],
[(45, 46, 92), (36,), (15, 15, 60, 68, 73), (9, 39, 80), (8, 33, 96)],
[(45, 46, 92), (36,), (9, 15, 15, 39, 73, 80), (60, 68), (8, 33, 96)],
[(9, 46, 60, 68), (36,), (8, 15, 39, 73, 96), (15, 33, 80), (45, 92)]]
>>> %timeit solve(A, B)
100 loops, best of 3: 10.5 ms per loop
Run Code Online (Sandbox Code Playgroud)
因此,对于这个大小的问题来说这是非常快的,尽管这里的优化注意到了.