gib*_*idi 16 python machine-learning neural-network keras
我在 keras 中使用回调函数来记录loss和val_loss每个时代,但我想按批次做同样的事情。我找到了一个名为 的回调函数on_batch_begin(self,batch,log={}),但我不知道如何使用它。
Mar*_*jko 13
这是自定义回调的示例。遵循并修改此处的示例:
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []
self.val_losses = []
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
self.val_losses.append(logs.get('val_loss'))
model = Sequential()
model.add(Dense(10, input_dim=784, init='uniform'))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
history = LossHistory()
model.fit(X_train, Y_train, batch_size=128, nb_epoch=20, verbose=0, validation_split=0.1,
callbacks=[history])
print history.losses
# outputs
'''
[0.66047596406559383, 0.3547245744908703, ..., 0.25953155204159617, 0.25901699725311789]
'''
print history.val_losses
Run Code Online (Sandbox Code Playgroud)