Col*_*uck 1 python for-loop dataframe pandas
我有一个名为 ES_15M_Summary 的数据帧,在标题为 ES_15M_Summary['Rolling_OLS_Coefficient'] 的列中具有系数/beta,如下所示:
如果上图中的列 ('Rolling_OLS_Coefficient') 的值大于 0.08,我希望名为 'Long' 的新列是二进制 'Y'。如果另一列中的值小于 0.08,我希望该值是 'NaN' 或只是 'N'(任何一种都有效)。
所以我正在写一个 for 循环来运行列。首先,我创建了一个名为“Long”的新列并将其设置为 NaN:
ES_15M_Summary['Long'] = np.nan
Run Code Online (Sandbox Code Playgroud)
然后我做了以下 For 循环:
for index, row in ES_15M_Summary.iterrows():
if ES_15M_Summary['Rolling_OLS_Coefficient'] > .08:
ES_15M_Summary['Long'] = 'Y'
else:
ES_15M_Summary['Long'] = 'NaN'
Run Code Online (Sandbox Code Playgroud)
我收到错误:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
Run Code Online (Sandbox Code Playgroud)
...参考上面显示的 if 语句行 (if...>.08:)。我不确定为什么我会收到这个错误或者 for 循环有什么问题。任何帮助表示赞赏。
我认为更好的是使用numpy.where:
mask = ES_15M_Summary['Rolling_OLS_Coefficient'] > .08
ES_15M_Summary['Long'] = np.where(mask, 'Y', 'N')
Run Code Online (Sandbox Code Playgroud)
样本:
ES_15M_Summary = pd.DataFrame({'Rolling_OLS_Coefficient':[0.07,0.01,0.09]})
print (ES_15M_Summary)
Rolling_OLS_Coefficient
0 0.07
1 0.01
2 0.09
mask = ES_15M_Summary['Rolling_OLS_Coefficient'] > .08
ES_15M_Summary['Long'] = np.where(mask, 'Y', 'N')
print (ES_15M_Summary)
Rolling_OLS_Coefficient Long
0 0.07 N
1 0.01 N
2 0.09 Y
Run Code Online (Sandbox Code Playgroud)
循环,非常慢的解决方案:
for index, row in ES_15M_Summary.iterrows():
if ES_15M_Summary.loc[index, 'Rolling_OLS_Coefficient'] > .08:
ES_15M_Summary.loc[index,'Long'] = 'Y'
else:
ES_15M_Summary.loc[index,'Long'] = 'N'
print (ES_15M_Summary)
Rolling_OLS_Coefficient Long
0 0.07 N
1 0.01 N
2 0.09 Y
Run Code Online (Sandbox Code Playgroud)
时间:
#3000 rows
ES_15M_Summary = pd.DataFrame({'Rolling_OLS_Coefficient':[0.07,0.01,0.09] * 1000})
#print (ES_15M_Summary)
def loop(df):
for index, row in ES_15M_Summary.iterrows():
if ES_15M_Summary.loc[index, 'Rolling_OLS_Coefficient'] > .08:
ES_15M_Summary.loc[index,'Long'] = 'Y'
else:
ES_15M_Summary.loc[index,'Long'] = 'N'
return (ES_15M_Summary)
print (loop(ES_15M_Summary))
In [51]: %timeit (loop(ES_15M_Summary))
1 loop, best of 3: 2.38 s per loop
In [52]: %timeit ES_15M_Summary['Long'] = np.where(ES_15M_Summary['Rolling_OLS_Coefficient'] > .08, 'Y', 'N')
1000 loops, best of 3: 555 µs per loop
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10354 次 |
| 最近记录: |