我刚刚注意到了这一点:
df[df.condition1 & df.condition2]
df[(df.condition1) & (df.condition2)]
Run Code Online (Sandbox Code Playgroud)
为什么这两行的输出不同?
我无法分享确切的数据,但我会尝试尽可能多地提供详细信息:
df[df.col1 == False & df.col2.isnull()] # returns 33 rows and the rule `df.col2.isnull()` is not in effect
df[(df.col1 == False) & (df.col2.isnull())] # returns 29 rows and both conditions are applied correctly
Run Code Online (Sandbox Code Playgroud)
感谢@jezrael和@ayhan,这里发生了什么,让我使用@jezael提供的示例:
df = pd.DataFrame({'col1':[True, False, False, False],
'col2':[4, np.nan, np.nan, 1]})
print (df)
col1 col2
0 True 4.0
1 False NaN
2 False NaN
3 False 1.0
Run Code Online (Sandbox Code Playgroud)
如果我们看看第3行:
col1 col2
3 False 1.0
Run Code Online (Sandbox Code Playgroud)
以及我写条件的方式:
df.col1 == False & df.col2.isnull() # is equivalent to False == False & False
Run Code Online (Sandbox Code Playgroud)
因为&
标志的优先级高于==
,没有括号False == False & False
相当于:
False == (False & False)
print(False == (False & False)) # prints True
Run Code Online (Sandbox Code Playgroud)
带括号:
print((False == False) & False) # prints False
Run Code Online (Sandbox Code Playgroud)
我认为用数字来说明这个问题要容易一些:
print(5 == 5 & 1) # prints False, because 5 & 1 returns 1 and 5==1 returns False
print(5 == (5 & 1)) # prints False, same reason as above
print((5 == 5) & 1) # prints 1, because 5 == 5 returns True, and True & 1 returns 1
Run Code Online (Sandbox Code Playgroud)
所以经验教训:总是添加括号!
我希望我能将答案分为@jezrael和@ayhan :(
ayh*_*han 10
df[condition1 & condition2]
和之间没有区别df[(condition1) & (condition2)]
.当您编写表达式并且运算符&
优先时会出现差异:
df = pd.DataFrame(np.random.randint(0, 10, size=(5, 3)), columns=list('abc'))
df
Out:
a b c
0 5 0 3
1 3 7 9
2 3 5 2
3 4 7 6
4 8 8 1
condition1 = df['a'] > 3
condition2 = df['b'] < 5
df[condition1 & condition2]
Out:
a b c
0 5 0 3
df[(condition1) & (condition2)]
Out:
a b c
0 5 0 3
Run Code Online (Sandbox Code Playgroud)
但是,如果你这样输入,你会看到一个错误:
df[df['a'] > 3 & df['b'] < 5]
Traceback (most recent call last):
File "<ipython-input-7-9d4fd21246ca>", line 1, in <module>
df[df['a'] > 3 & df['b'] < 5]
File "/home/ayhan/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py", line 892, in __nonzero__
.format(self.__class__.__name__))
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
Run Code Online (Sandbox Code Playgroud)
这是因为3 & df['b']
首先评估(这False & df.col2.isnull()
在您的示例中对应).所以你需要在括号中对条件进行分组:
df[(df['a'] > 3) & (df['b'] < 5)]
Out[8]:
a b c
0 5 0 3
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1338 次 |
最近记录: |