unu*_*tbu 12
假设它cube
有形状(W, H, D)
,你希望把它分成几个N
小方块的形状(w, h, d)
.由于NumPy阵列具有固定长度的轴,因此w
必须均匀分割W
,并且类似于h
和d
.
然后有一种方法可以将形状的立方体重新塑造(W, H, D)
成一个新的形状阵列(N, w, h, d)
.
例如,如果arr = np.arange(4*4*4).reshape(4,4,4)
(so (W,H,D) = (4,4,4)
)并且我们希望将其分解为形状的立方体(2,2,2)
,那么我们可以使用
In [283]: arr.reshape(2,2,2,2,2,2).transpose(0,2,4,1,3,5).reshape(-1,2,2,2)
Out[283]:
array([[[[ 0, 1],
[ 4, 5]],
[[16, 17],
[20, 21]]],
...
[[[42, 43],
[46, 47]],
[[58, 59],
[62, 63]]]])
Run Code Online (Sandbox Code Playgroud)
这里的想法是为数组添加额外的轴,这些轴充当地点标记:
number of repeats act as placemarkers
o---o---o
| | |
v v v
(2,2,2,2,2,2)
^ ^ ^
| | |
o---o---o
newshape
Run Code Online (Sandbox Code Playgroud)
然后我们可以对轴进行重新排序(使用transpose
),以便首先获得重复次数,并在最后显示新闻形状:
arr.reshape(2,2,2,2,2,2).transpose(0,2,4,1,3,5)
Run Code Online (Sandbox Code Playgroud)
最后,调用reshape(-1, w, h, d)
将所有地标轴压缩成单个轴.这会产生一个形状数组,(N, w, h, d)
其中N
是小立方体的数量.
上面使用的想法是将这个想法概括为3维.它可以进一步推广到任何维度的ndarray:
import numpy as np
def cubify(arr, newshape):
oldshape = np.array(arr.shape)
repeats = (oldshape / newshape).astype(int)
tmpshape = np.column_stack([repeats, newshape]).ravel()
order = np.arange(len(tmpshape))
order = np.concatenate([order[::2], order[1::2]])
# newshape must divide oldshape evenly or else ValueError will be raised
return arr.reshape(tmpshape).transpose(order).reshape(-1, *newshape)
print(cubify(np.arange(4*6*16).reshape(4,6,16), (2,3,4)).shape)
print(cubify(np.arange(8*8*8*8).reshape(8,8,8,8), (2,2,2,2)).shape)
Run Code Online (Sandbox Code Playgroud)
产生新的形状数组
(16, 2, 3, 4)
(256, 2, 2, 2, 2)
Run Code Online (Sandbox Code Playgroud)
要"取消"数组:
def uncubify(arr, oldshape):
N, newshape = arr.shape[0], arr.shape[1:]
oldshape = np.array(oldshape)
repeats = (oldshape / newshape).astype(int)
tmpshape = np.concatenate([repeats, newshape])
order = np.arange(len(tmpshape)).reshape(2, -1).ravel(order='F')
return arr.reshape(tmpshape).transpose(order).reshape(oldshape)
Run Code Online (Sandbox Code Playgroud)
这里有一些测试代码来检查cubify
和uncubify
反转.
import numpy as np
def cubify(arr, newshape):
oldshape = np.array(arr.shape)
repeats = (oldshape / newshape).astype(int)
tmpshape = np.column_stack([repeats, newshape]).ravel()
order = np.arange(len(tmpshape))
order = np.concatenate([order[::2], order[1::2]])
# newshape must divide oldshape evenly or else ValueError will be raised
return arr.reshape(tmpshape).transpose(order).reshape(-1, *newshape)
def uncubify(arr, oldshape):
N, newshape = arr.shape[0], arr.shape[1:]
oldshape = np.array(oldshape)
repeats = (oldshape / newshape).astype(int)
tmpshape = np.concatenate([repeats, newshape])
order = np.arange(len(tmpshape)).reshape(2, -1).ravel(order='F')
return arr.reshape(tmpshape).transpose(order).reshape(oldshape)
tests = [[np.arange(4*6*16), (4,6,16), (2,3,4)],
[np.arange(8*8*8*8), (8,8,8,8), (2,2,2,2)]]
for arr, oldshape, newshape in tests:
arr = arr.reshape(oldshape)
assert np.allclose(uncubify(cubify(arr, newshape), oldshape), arr)
# cuber = Cubify(oldshape,newshape)
# assert np.allclose(cuber.uncubify(cuber.cubify(arr)), arr)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1265 次 |
最近记录: |