执行softmax_cross_entropy_with_logits时的ValueError

suk*_*uku 20 tensorflow

我正在关注tensorflow教程.最近的张量流更新softmax_cross_entropy_with_logits()已经修改了成本函数.因此,本教程中的代码给出以下错误:

ValueError: Only call softmax_cross_entropy_with_logits with named arguments (labels=..., logits=..., ...)

它是什么意思以及如何纠正它?

这是整个代码,直到那一点:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')

def neural_network_model(data):
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784, n_nodes_hl1])),
                  'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}

hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                  'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}

hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                  'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}

output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
                'biases':tf.Variable(tf.random_normal([n_classes])),}


l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.matmul(l3,output_layer['weights']) + output_layer['biases']

return output

def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
Run Code Online (Sandbox Code Playgroud)

nes*_*uno 38

更改

tf.nn.softmax_cross_entropy_with_logits(prediction,y)
Run Code Online (Sandbox Code Playgroud)

tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)
Run Code Online (Sandbox Code Playgroud)