Sim*_*mon 4 python multithreading opencv face-detection dlib
我正在使用 OpenCv 和 Dlib 执行带有地标的面部识别,实时来自网络摄像头流。语言是Python。它在我的 macbook 笔记本电脑上运行良好,但我需要它在台式计算机上 24/7 全天候运行。计算机是运行 Debian Jessie 的 PC Intel® Core™2 Quad CPU Q6600 @ 2.40GHz 32bit。性能下降是剧烈的:由于处理有 10 秒的延迟!
因此,我研究了多线程以获得性能:
我从 dlib 示例代码中得到了面部地标代码。我知道它可能可以优化,但我想了解为什么我不能通过多线程使用我的(旧)计算机的全部功能?
我会把我的代码放在下面,非常感谢阅读:)
from __future__ import print_function
import numpy as np
import cv2
import dlib
from multiprocessing.pool import ThreadPool
from collections import deque
from common import clock, draw_str, StatValue
import video
class DummyTask:
def __init__(self, data):
self.data = data
def ready(self):
return True
def get(self):
return self.data
if __name__ == '__main__':
import sys
print(__doc__)
try:
fn = sys.argv[1]
except:
fn = 0
cap = video.create_capture(fn)
#Face detector
detector = dlib.get_frontal_face_detector()
#Landmarks shape predictor
predictor = dlib.shape_predictor("landmarks/shape_predictor_68_face_landmarks.dat")
# This is where the facial detection takes place
def process_frame(frame, t0, detector, predictor):
# some intensive computation...
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
clahe_image = clahe.apply(gray)
detections = detector(clahe_image, 1)
for k,d in enumerate(detections):
shape = predictor(clahe_image, d)
for i in range(1,68): #There are 68 landmark points on each face
cv2.circle(frame, (shape.part(i).x, shape.part(i).y), 1, (0,0,255), thickness=2)
return frame, t0
threadn = cv2.getNumberOfCPUs()
pool = ThreadPool(processes = threadn)
pending = deque()
threaded_mode = True
latency = StatValue()
frame_interval = StatValue()
last_frame_time = clock()
while True:
while len(pending) > 0 and pending[0].ready():
res, t0 = pending.popleft().get()
latency.update(clock() - t0)
draw_str(res, (20, 20), "threaded : " + str(threaded_mode))
draw_str(res, (20, 40), "latency : %.1f ms" % (latency.value*1000))
draw_str(res, (20, 60), "frame interval : %.1f ms" % (frame_interval.value*1000))
cv2.imshow('threaded video', res)
if len(pending) < threadn:
ret, frame = cap.read()
t = clock()
frame_interval.update(t - last_frame_time)
last_frame_time = t
if threaded_mode:
task = pool.apply_async(process_frame, (frame.copy(), t, detector, predictor))
else:
task = DummyTask(process_frame(frame, t, detector, predictor))
pending.append(task)
ch = cv2.waitKey(1)
if ch == ord(' '):
threaded_mode = not threaded_mode
if ch == 27:
break
cv2.destroyAllWindows()Run Code Online (Sandbox Code Playgroud)
性能问题是由于 dlib 的错误编译造成的。与正确编译相比,不要使用 pip install dlibwhich 出于某种原因运行非常缓慢。我以这种方式从将近 10 秒的延迟变为大约 2 秒。所以最后我不需要多线程/处理,但我正在努力提高速度。谢谢您的帮助 :)