如何使用matplotlib在python中绘制矢量

Shr*_*mar 18 python numpy vector matplotlib python-2.7

我正在学习线性代数课程,我希望可视化动作中的向量,例如向量加法,法向量等.

例如:

V = np.array([[1,1],[-2,2],[4,-7]])
Run Code Online (Sandbox Code Playgroud)

在这种情况下,我想绘制3个向量V1 = (1,1), M2 = (-2,2), M3 = (4,-7).

然后我应该能够添加V1,V2来绘制一个新的矢量V12(在一个图中一起).

当我使用下面的代码时,情节不符合预期

import numpy as np
import matplotlib.pyplot as plt
M = np.array([[1,1],[-2,2],[4,-7]])

print("vector:1")
print(M[0,:])
# print("vector:2")
# print(M[1,:])
rows,cols = M.T.shape
print(cols)

for i,l in enumerate(range(0,cols)):
    print("Iteration: {}-{}".format(i,l))
    print("vector:{}".format(i))
    print(M[i,:])
    v1 = [0,0],[M[i,0],M[i,1]]
    # v1 = [M[i,0]],[M[i,1]]
    print(v1)
    plt.figure(i)
    plt.plot(v1)
    plt.show()
Run Code Online (Sandbox Code Playgroud)

非常感谢任何帮助,谢谢你提前.

Azi*_*lto 28

怎么样的

import numpy as np
import matplotlib.pyplot as plt

V = np.array([[1,1],[-2,2],[4,-7]])
origin = [0], [0] # origin point

plt.quiver(*origin, V[:,0], V[:,1], color=['r','b','g'], scale=21)
plt.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

然后将任意两个向量相加并将它们绘制到相同的图中,在调用之前执行此操作plt.show().就像是:

plt.quiver(*origin, V[:,0], V[:,1], color=['r','b','g'], scale=21)
v12 = V[0] + V[1] # adding up the 1st (red) and 2nd (blue) vectors
plt.quiver(*origin, v12[0], v12[1])
plt.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

注意:在Python2中使用origin[0], origin[1]而不是*origin

  • 如果轴与矢量幅度匹配,这将非常有帮助。有没有办法做到这一点? (2认同)

fug*_*ede 12

matplotlib.pyplot.quiver如链接答案中所述,这也可以使用;

plt.quiver([0, 0, 0], [0, 0, 0], [1, -2, 4], [1, 2, -7], angles='xy', scale_units='xy', scale=1)
plt.xlim(-10, 10)
plt.ylim(-10, 10)
plt.show()
Run Code Online (Sandbox Code Playgroud)

mpl输出


mit*_*ibo 9

您的主要问题是您在循环中创建新图形,因此每个向量都绘制在不同的图形上。这是我想出的,如果它仍然不是您所期望的,请告诉我:

代码:

import numpy as np
import matplotlib.pyplot as plt
M = np.array([[1,1],[-2,2],[4,-7]])

rows,cols = M.T.shape

#Get absolute maxes for axis ranges to center origin
#This is optional
maxes = 1.1*np.amax(abs(M), axis = 0)

for i,l in enumerate(range(0,cols)):
    xs = [0,M[i,0]]
    ys = [0,M[i,1]]
    plt.plot(xs,ys)

plt.plot(0,0,'ok') #<-- plot a black point at the origin
plt.axis('equal')  #<-- set the axes to the same scale
plt.xlim([-maxes[0],maxes[0]]) #<-- set the x axis limits
plt.ylim([-maxes[1],maxes[1]]) #<-- set the y axis limits
plt.legend(['V'+str(i+1) for i in range(cols)]) #<-- give a legend
plt.grid(b=True, which='major') #<-- plot grid lines
plt.show()
Run Code Online (Sandbox Code Playgroud)

输出:

在此处输入图片说明

编辑代码:

import numpy as np
import matplotlib.pyplot as plt
M = np.array([[1,1],[-2,2],[4,-7]])

rows,cols = M.T.shape

#Get absolute maxes for axis ranges to center origin
#This is optional
maxes = 1.1*np.amax(abs(M), axis = 0)
colors = ['b','r','k']


for i,l in enumerate(range(0,cols)):
    plt.axes().arrow(0,0,M[i,0],M[i,1],head_width=0.05,head_length=0.1,color = colors[i])

plt.plot(0,0,'ok') #<-- plot a black point at the origin
plt.axis('equal')  #<-- set the axes to the same scale
plt.xlim([-maxes[0],maxes[0]]) #<-- set the x axis limits
plt.ylim([-maxes[1],maxes[1]]) #<-- set the y axis limits
plt.grid(b=True, which='major') #<-- plot grid lines
plt.show()
Run Code Online (Sandbox Code Playgroud)

编辑输出: 在此处输入图片说明


jua*_*aga 5

您期望以下各项做什么?

v1 = [0,0],[M[i,0],M[i,1]]
v1 = [M[i,0]],[M[i,1]]
Run Code Online (Sandbox Code Playgroud)

这将创建两个不同的元组,并且您将覆盖第一次执行的操作...无论如何,您matplotlib无法理解您使用的意义上的“向量”。您必须明确,并绘制“箭头”:

In [5]: ax = plt.axes()

In [6]: ax.arrow(0, 0, *v1, head_width=0.05, head_length=0.1)
Out[6]: <matplotlib.patches.FancyArrow at 0x114fc8358>

In [7]: ax.arrow(0, 0, *v2, head_width=0.05, head_length=0.1)
Out[7]: <matplotlib.patches.FancyArrow at 0x115bb1470>

In [8]: plt.ylim(-5,5)
Out[8]: (-5, 5)

In [9]: plt.xlim(-5,5)
Out[9]: (-5, 5)

In [10]: plt.show()
Run Code Online (Sandbox Code Playgroud)

结果:

在此处输入图片说明


Shr*_*mar 2

感谢大家,你们的每一篇文章都对我有很大帮助。 rbierman代码对于我的问题来说非常直接,我做了一些修改并创建了一个函数来绘制给定数组中的向量。我很想看到任何进一步改进它的建议。

import numpy as np
import matplotlib.pyplot as plt
def plotv(M):
    rows,cols = M.T.shape
    print(rows,cols)

    #Get absolute maxes for axis ranges to center origin
    #This is optional
    maxes = 1.1*np.amax(abs(M), axis = 0)
    colors = ['b','r','k']
    fig = plt.figure()
    fig.suptitle('Vectors', fontsize=10, fontweight='bold')

    ax = fig.add_subplot(111)
    fig.subplots_adjust(top=0.85)
    ax.set_title('Vector operations')

    ax.set_xlabel('x')
    ax.set_ylabel('y')

    for i,l in enumerate(range(0,cols)):
        # print(i)
        plt.axes().arrow(0,0,M[i,0],M[i,1],head_width=0.2,head_length=0.1,zorder=3)

        ax.text(M[i,0],M[i,1], str(M[i]), style='italic',
            bbox={'facecolor':'red', 'alpha':0.5, 'pad':0.5})

    plt.plot(0,0,'ok') #<-- plot a black point at the origin
    # plt.axis('equal')  #<-- set the axes to the same scale
    plt.xlim([-maxes[0],maxes[0]]) #<-- set the x axis limits
    plt.ylim([-maxes[1],maxes[1]]) #<-- set the y axis limits

    plt.grid(b=True, which='major') #<-- plot grid lines
    plt.show()

r = np.random.randint(4,size=[2,2])
print(r[0,:])
print(r[1,:])
r12 = np.add(r[0,:],r[1,:])
print(r12)
plotv(np.vstack((r,r12)))
Run Code Online (Sandbox Code Playgroud)

对随机向量执行向量加法