如何按定义的时间间隔对pandas数据帧进行分组?

Edu*_*oRL 12 python datetime group-by pandas

我有这样的dataFrame,我想每60分钟分组一次,并在06:30开始分组.

                           data
index
2017-02-14 06:29:57    11198648
2017-02-14 06:30:01    11198650
2017-02-14 06:37:22    11198706
2017-02-14 23:11:13    11207728
2017-02-14 23:21:43    11207774
2017-02-14 23:22:36    11207776
Run Code Online (Sandbox Code Playgroud)

我在用:

df.groupby(pd.TimeGrouper(freq='60Min'))
Run Code Online (Sandbox Code Playgroud)

我得到这个分组:

                      data
index       
2017-02-14 06:00:00     x1
2017-02-14 07:00:00     x2
2017-02-14 08:00:00     x3
2017-02-14 09:00:00     x4
2017-02-14 10:00:00     x5
Run Code Online (Sandbox Code Playgroud)

但我正在寻找这个结果:

                      data
index       
2017-02-14 06:30:00     x1
2017-02-14 07:30:00     x2
2017-02-14 08:30:00     x3
2017-02-14 09:30:00     x4
2017-02-14 10:30:00     x5
Run Code Online (Sandbox Code Playgroud)

如何告诉函数在6:30以一小时为间隔开始分组?

如果无法通过.groupby(pd.TimeGrouper(freq = '60Min'))完成,那么最好的方法是什么?

向前致敬并非常感谢

Nic*_*eli 16

使用base=30会同label='right'中的参数pd.Grouper.

指定label='right'使得时间段从6:30(较高侧)开始分组而不是5:30.此外,默认情况下base设置为0 ,因此需要将这些偏移30以考虑日期的向前传播.

假设,您想要聚合每个子组的第一个元素,然后:

df.groupby(pd.Grouper(freq='60Min', base=30, label='right')).first()
# same thing using resample - df.resample('60Min', base=30, label='right').first()
Run Code Online (Sandbox Code Playgroud)

收益率:

                           data
index                          
2017-02-14 06:30:00  11198648.0
2017-02-14 07:30:00  11198650.0
2017-02-14 08:30:00         NaN
2017-02-14 09:30:00         NaN
2017-02-14 10:30:00         NaN
2017-02-14 11:30:00         NaN
2017-02-14 12:30:00         NaN
2017-02-14 13:30:00         NaN
2017-02-14 14:30:00         NaN
2017-02-14 15:30:00         NaN
2017-02-14 16:30:00         NaN
2017-02-14 17:30:00         NaN
2017-02-14 18:30:00         NaN
2017-02-14 19:30:00         NaN
2017-02-14 20:30:00         NaN
2017-02-14 21:30:00         NaN
2017-02-14 22:30:00         NaN
2017-02-14 23:30:00  11207728.0
Run Code Online (Sandbox Code Playgroud)


Erf*_*fan 7

使用DataFrame.resamplewhich 是重新采样时间序列的专用方法,这样我们就不需要DataFrame.GroupBypd.Grouper

df.resample('60min', base=30, label='right').first()
Run Code Online (Sandbox Code Playgroud)

输出

                           data
index                          
2017-02-14 06:30:00  11198648.0
2017-02-14 07:30:00  11198650.0
2017-02-14 08:30:00         NaN
2017-02-14 09:30:00         NaN
2017-02-14 10:30:00         NaN
2017-02-14 11:30:00         NaN
2017-02-14 12:30:00         NaN
2017-02-14 13:30:00         NaN
2017-02-14 14:30:00         NaN
2017-02-14 15:30:00         NaN
2017-02-14 16:30:00         NaN
2017-02-14 17:30:00         NaN
2017-02-14 18:30:00         NaN
2017-02-14 19:30:00         NaN
2017-02-14 20:30:00         NaN
2017-02-14 21:30:00         NaN
2017-02-14 22:30:00         NaN
2017-02-14 23:30:00  11207728.0
Run Code Online (Sandbox Code Playgroud)

注意:当您的数据框中有多列时,您必须指定要聚合的列:

df.resample('60min', base=30, label='right')['data'].first()
Run Code Online (Sandbox Code Playgroud)