如何在Windows上从ffmpeg到python同时获取实时视频帧和时间戳

vij*_*boy 6 python windows ffmpeg

搜索OpenCV的替代方案不会为我的计算机视觉算法中需要的实时摄像机流(在Windows上)提供时间戳,我发现ffmpeg和这篇优秀的文章https://zulko.github.io/blog/2013/09/27/read-and-write-video-frames-in-python-using-ffmpeg / 该解决方案使用ffmpeg,访问其标准输出(stdout)流.我将其扩展为读取标准错误(stderr)流.

在Windows上处理python代码,同时我收到来自ffmpeg stdout的视频帧,但是stderr在为第一帧提供showinfo videofilter详细信息(时间戳)后冻结.

我记得在某个地方的ffmpeg论坛上看到重定向时会绕过像showinfo这样的视频过滤器.这是为什么以下代码无法按预期工作的原因?

预期:它应该将视频帧写入磁盘以及打印时间戳详细信息.
实际:它写入视频文件但没有获取时间戳(showinfo)详细信息.

这是我试过的代码:

import subprocess as sp
import numpy
import cv2

command = [ 'ffmpeg', 
            '-i', 'e:\sample.wmv',
            '-pix_fmt', 'rgb24',
            '-vcodec', 'rawvideo',
            '-vf', 'showinfo', # video filter - showinfo will provide frame timestamps
            '-an','-sn', #-an, -sn disables audio and sub-title processing respectively
            '-f', 'image2pipe', '-'] # we need to output to a pipe

pipe = sp.Popen(command, stdout = sp.PIPE, stderr = sp.PIPE) # TODO someone on ffmpeg forum said video filters (e.g. showinfo) are bypassed when stdout is redirected to pipes??? 

for i in range(10):
    raw_image = pipe.stdout.read(1280*720*3)
    img_info = pipe.stderr.read(244) # 244 characters is the current output of showinfo video filter
    print "showinfo output", img_info
    image1 =  numpy.fromstring(raw_image, dtype='uint8')
    image2 = image1.reshape((720,1280,3))  

    # write video frame to file just to verify
    videoFrameName = 'Video_Frame{0}.png'.format(i)
    cv2.imwrite(videoFrameName,image2)

    # throw away the data in the pipe's buffer.
    pipe.stdout.flush()
    pipe.stderr.flush()
Run Code Online (Sandbox Code Playgroud)

那么如何将帧时间戳从ffmpeg转换为python代码,以便可以在我的计算机视觉算法中使用...

vij*_*boy 6

重定向 stderr 在 python 中有效。
所以pipe = sp.Popen(command, stdout = sp.PIPE, stderr = sp.PIPE)
不要这样做pipe = sp.Popen(command, stdout = sp.PIPE, stderr = sp.STDOUT)

我们可以通过添加异步调用来读取 ffmpeg 的标准流(stdout 和 stderr)来避免重定向。这将避免视频帧和时间戳的任何混合,从而避免容易出错的分离。因此修改原始代码以使用threading模块将如下所示:

# Python script to read video frames and timestamps using ffmpeg
import subprocess as sp
import threading

import matplotlib.pyplot as plt
import numpy
import cv2

ffmpeg_command = [ 'ffmpeg',
                   '-nostats', # do not print extra statistics
                    #'-debug_ts', # -debug_ts could provide timestamps avoiding showinfo filter (-vcodec copy). Need to check by providing expected fps TODO
                    '-r', '30', # output 30 frames per second
                    '-i', 'e:\sample.wmv',
                    '-an','-sn', #-an, -sn disables audio and sub-title processing respectively
                    '-pix_fmt', 'rgb24',
                    '-vcodec', 'rawvideo', 
                    #'-vcodec', 'copy', # very fast!, direct copy - Note: No Filters, No Decode/Encode, no quality loss
                    #'-vframes', '20', # process n video frames only. For Debugging
                    '-vf', 'showinfo', # showinfo videofilter provides frame timestamps as pts_time
                    '-f', 'image2pipe', 'pipe:1' ] # outputs to stdout pipe. can also use '-' which is redirected to pipe


# seperate method to read images on stdout asynchronously
def AppendProcStdout(proc, nbytes, AppendList):
    while proc.poll() is None: # continue while the process is alive
        AppendList.append(proc.stdout.read(nbytes)) # read image bytes at a time

# seperate method to read image info. on stderr asynchronously
def AppendProcStderr(proc, AppendList):
    while proc.poll() is None: # continue while the process is alive
        try: AppendList.append(proc.stderr.next()) # read stderr until empty
        except StopIteration: continue # ignore stderr empty exception and continue


if __name__ == '__main__':
    # run ffmpeg command
    pipe = sp.Popen(ffmpeg_command, stdout=sp.PIPE, stderr=sp.PIPE) 

    # 2 threads to talk with ffmpeg stdout and stderr pipes
    framesList = [];
    frameDetailsList = []
    appendFramesThread = threading.Thread(group=None, target=AppendProcStdout, name='FramesThread', args=(pipe, 1280*720*3, framesList), kwargs=None, verbose=None) # assuming rgb video frame with size 1280*720 
    appendInfoThread = threading.Thread(group=None, target=AppendProcStderr, name='InfoThread', args=(pipe, frameDetailsList), kwargs=None, verbose=None) 

    # start threads to capture ffmpeg frames and info.
    appendFramesThread.start()
    appendInfoThread.start()

    # wait for few seconds and close - simulating cancel
    import time; time.sleep(2) 
    pipe.terminate() 

    # check if threads finished and close
    appendFramesThread.join() 
    appendInfoThread.join() 

    # save an image per 30 frames to disk 
    savedList = []
    for cnt,raw_image in enumerate(framesList):
        if (cnt%30 != 0): continue
        image1 =  numpy.fromstring(raw_image, dtype='uint8')
        image2 = image1.reshape((720,1280,3))  # assuming rgb image with size 1280 X 720
        # write video frame to file just to verify
        videoFrameName = 'video_frame{0}.png'.format(cnt)
        cv2.imwrite(videoFrameName,image2)
        savedList.append('{} {}'.format(videoFrameName, image2.shape))

    print '### Results ###'
    print 'Images captured: ({}) \nImages saved to disk:{}\n'.format(len(framesList), savedList) # framesList contains all the video frames got from the ffmpeg
    print 'Images info captured: \n', ''.join(frameDetailsList) # this contains all the timestamp details got from the ffmpeg showinfo videofilter and some initial noise text which can be easily removed while parsing
Run Code Online (Sandbox Code Playgroud)


Mic*_*ael 5

您可以使用MoviePy

import moviepy.editor as mpy

vid = mpy.VideoFileClip('e:\\sample.wmv')
for timestamp, raw_img in vid.iter_frames(with_times=True):
    # do stuff
Run Code Online (Sandbox Code Playgroud)