sno*_*eji 5 python nlp tf-idf cosine-similarity gensim
我有一个数千行文本的数据集,我的目标是计算tfidf得分,然后计算文档之间的余弦相似度,这就是我在Python中使用gensim所遵循的教程:
dictionary = corpora.Dictionary(dat)
corpus = [dictionary.doc2bow(text) for text in dat]
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
index = similarities.MatrixSimilarity(corpus_tfidf)
Run Code Online (Sandbox Code Playgroud)
假设我们已经建立了tfidf矩阵和相似度,当我们有一个新文档进入时,我想在现有数据集中查询其最相似的文档.
问题:有没有什么方法可以更新tf-idf矩阵,这样我就不必将新文本doc附加到原始数据集并重新计算整个事物了?
我将发布我的解决方案,因为没有其他答案。假设我们处于以下场景:
import gensim
from gensim import models
from gensim import corpora
from gensim import similarities
from nltk.tokenize import word_tokenize
import pandas as pd
# routines:
text = "I work on natural language processing and I want to figure out how does gensim work"
text2 = "I love computer science and I code in Python"
dat = pd.Series([text,text2])
dat = dat.apply(lambda x: str(x).lower())
dat = dat.apply(lambda x: word_tokenize(x))
dictionary = corpora.Dictionary(dat)
corpus = [dictionary.doc2bow(doc) for doc in dat]
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
#Query:
query_text = "I love icecream and gensim"
query_text = query_text.lower()
query_text = word_tokenize(query_text)
vec_bow = dictionary.doc2bow(query_text)
vec_tfidf = tfidf[vec_bow]
Run Code Online (Sandbox Code Playgroud)
如果我们看看:
print(vec_bow)
[(0, 1), (7, 1), (12, 1), (15, 1)]
Run Code Online (Sandbox Code Playgroud)
和:
print(tfidf[vec_bow])
[(12, 0.7071067811865475), (15, 0.7071067811865475)]
Run Code Online (Sandbox Code Playgroud)
仅供参考 ID 和文档:
print(dictionary.items())
[(0, u'and'),
(1, u'on'),
(8, u'processing'),
(3, u'natural'),
(4, u'figure'),
(5, u'language'),
(9, u'how'),
(7, u'i'),
(14, u'code'),
(19, u'in'),
(2, u'work'),
(16, u'python'),
(6, u'to'),
(10, u'does'),
(11, u'want'),
(17, u'science'),
(15, u'love'),
(18, u'computer'),
(12, u'gensim'),
(13, u'out')]
Run Code Online (Sandbox Code Playgroud)
看起来查询仅选取现有术语并使用预先计算的权重来为您提供 tfidf 分数。因此,我的解决方法是每周或每天重建模型,因为这样做速度很快。