Pandas 多索引数据框到嵌套字典

par*_*asu 8 pandas

假设我有以下数据框

df = pd.DataFrame({0: {('A', 'a'): 1, ('A', 'b'): 6, ('B', 'a'): 2, ('B', 'b'): 7},
 1: {('A', 'a'): 2, ('A', 'b'): 7, ('B', 'a'): 3, ('B', 'b'): 8},
 2: {('A', 'a'): 3, ('A', 'b'): 8, ('B', 'a'): 4, ('B', 'b'): 9},
 3: {('A', 'a'): 4, ('A', 'b'): 9, ('B', 'a'): 5, ('B', 'b'): 1},
 4: {('A', 'a'): 5, ('A', 'b'): 1, ('B', 'a'): 6, ('B', 'b'): 2}})
Run Code Online (Sandbox Code Playgroud)

看起来是这样的:

     0  1  2  3  4
A a  1  2  3  4  5
  b  6  7  8  9  1
B a  2  3  4  5  6
  b  7  8  9  1  2
Run Code Online (Sandbox Code Playgroud)

当我通过to_dict(不管堆叠,拆开)将其转换为字典时,我得到一个字典,其键是元组:

df.transpose().to_dict()

{('A', 'a'): {0: 1, 1: 2, 2: 3, 3: 4, 4: 5},
 ('A', 'b'): {0: 6, 1: 7, 2: 8, 3: 9, 4: 1},
 ('B', 'a'): {0: 2, 1: 3, 2: 4, 3: 5, 4: 6},
 ('B', 'b'): {0: 7, 1: 8, 2: 9, 3: 1, 4: 2}}
Run Code Online (Sandbox Code Playgroud)

我想要的是这样的嵌套字典:

{'A':{'a': {0: 1, 1:2, 2:3, 3:4, 4:5}, 'b':{0:6, 1:7, 2:8, 3:9,4:1}...
Run Code Online (Sandbox Code Playgroud)

Ted*_*rou 14

您可以使用字典理解来遍历外部级别(值“A”和“B”)并使用该xs方法按这些级别对帧进行切片。

{level: df.xs(level).to_dict('index') for level in df.index.levels[0]}

{'A': {'a': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5},
  'b': {0: 6, 1: 7, 2: 8, 3: 9, 4: 1}},
 'B': {'a': {0: 2, 1: 3, 2: 4, 3: 5, 4: 6},
  'b': {0: 7, 1: 8, 2: 9, 3: 1, 4: 2}}}
Run Code Online (Sandbox Code Playgroud)