如果我有一个具有NULL或一些非null值的系列.如何找到值不为NULL的第一行,以便我可以向用户报告数据类型.如果该值为非null,则所有值都是该系列中的相同数据类型.
谢谢
jez*_*ael 20
您可以使用first_valid_indexselect by loc:
s = pd.Series([np.nan,2,np.nan])
print (s)
0 NaN
1 2.0
2 NaN
dtype: float64
print (s.first_valid_index())
1
print (s.loc[s.first_valid_index()])
2.0
# If your Series contains ALL NaNs, you'll need to check as follows:
s = pd.Series([np.nan, np.nan, np.nan])
idx = s.first_valid_index() # Will return None
first_valid_value = s.loc[idx] if idx is not None else None
print(first_valid_value)
None
Run Code Online (Sandbox Code Playgroud)
对于一个系列,这将返回第一个非空值:
创建系列:
s = pd.Series(index=[2,4,5,6], data=[None, None, 2, None])
Run Code Online (Sandbox Code Playgroud)
这创建了这个系列:
2 NaN
4 NaN
5 2.0
6 NaN
dtype: float64
Run Code Online (Sandbox Code Playgroud)
您可以使用以下方法获取第一个非 NaN 值:
s.loc[~s.isnull()].iloc[0]
Run Code Online (Sandbox Code Playgroud)
返回
2.0
Run Code Online (Sandbox Code Playgroud)
另一方面,如果您有这样的数据框:
df = pd.DataFrame(index=[2,4,5,6], data=np.asarray([[None, None, 2, None], [1, None, 3, 4]]).transpose(),
columns=['a', 'b'])
Run Code Online (Sandbox Code Playgroud)
看起来像这样:
a b
2 None 1
4 None None
5 2 3
6 None 4
Run Code Online (Sandbox Code Playgroud)
您可以使用此选择每列的第一个非空值(对于 a 列):
df.a.loc[~df.a.isnull()].iloc[0]
Run Code Online (Sandbox Code Playgroud)
或者,如果您希望第一行不包含 Null 值,则可以使用:
df.loc[~df.isnull().sum(1).astype(bool)].iloc[0]
Run Code Online (Sandbox Code Playgroud)
返回:
a 2
b 3
Name: 5, dtype: object
Run Code Online (Sandbox Code Playgroud)
您也可以使用get方法代替
(Pdb) type(audio_col)
<class 'pandas.core.series.Series'>
(Pdb) audio_col.first_valid_index()
19
(Pdb) audio_col.get(first_audio_idx)
'first-not-nan-value.ogg'
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
11570 次 |
| 最近记录: |