计算NumPy数组中连续的1

use*_*827 5 python numpy cumsum

[1, 1, 1, 0, 0, 0, 1, 1, 0, 0]
Run Code Online (Sandbox Code Playgroud)

我有一个像上面一样由 0 和 1 组成的 NumPy 数组。如何添加所有连续的 1,如下所示?每当我遇到 0 时,我都会重置。

[1, 2, 3, 0, 0, 0, 1, 2, 0, 0]
Run Code Online (Sandbox Code Playgroud)

我可以使用 for 循环来做到这一点,但是是否有使用 NumPy 的矢量化解决方案?

Div*_*kar 7

这是一种矢量化方法 -

def island_cumsum_vectorized(a):
    a_ext = np.concatenate(( [0], a, [0] ))
    idx = np.flatnonzero(a_ext[1:] != a_ext[:-1])
    a_ext[1:][idx[1::2]] = idx[::2] - idx[1::2]
    return a_ext.cumsum()[1:-1]
Run Code Online (Sandbox Code Playgroud)

样品运行 -

In [91]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [92]: island_cumsum_vectorized(a)
Out[92]: array([1, 2, 3, 0, 0, 0, 1, 2, 0, 0])

In [93]: a = np.array([0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1])

In [94]: island_cumsum_vectorized(a)
Out[94]: array([0, 1, 2, 3, 4, 0, 0, 0, 1, 2, 0, 0, 1])
Run Code Online (Sandbox Code Playgroud)

运行时测试

对于时间,我将使用 OP 的示例输入数组并重复/平铺它,希望这应该是一个less opportunistic benchmark-

小案例:

In [16]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [17]: a = np.tile(a,10)  # Repeat OP's data 10 times

# @Paul Panzer's solution
In [18]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
10000 loops, best of 3: 73.4 µs per loop

In [19]: %timeit island_cumsum_vectorized(a)
100000 loops, best of 3: 8.65 µs per loop
Run Code Online (Sandbox Code Playgroud)

更大的情况:

In [20]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [21]: a = np.tile(a,1000)  # Repeat OP's data 1000 times

# @Paul Panzer's solution
In [22]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
100 loops, best of 3: 6.52 ms per loop

In [23]: %timeit island_cumsum_vectorized(a)
10000 loops, best of 3: 49.7 µs per loop
Run Code Online (Sandbox Code Playgroud)

不,我想要一个非常大的案例:

In [24]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [25]: a = np.tile(a,100000)  # Repeat OP's data 100000 times

# @Paul Panzer's solution
In [26]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
1 loops, best of 3: 725 ms per loop

In [27]: %timeit island_cumsum_vectorized(a)
100 loops, best of 3: 7.28 ms per loop
Run Code Online (Sandbox Code Playgroud)