cod*_*nob 12 python apply scipy percentile pandas
对于每对src和dest机场城市,我想在a给定列值的情况下返回列的百分位数b.
我可以手动执行此操作:
示例df只有2对src/dest(我的实际df中有数千个):
dt src dest a b
0 2016-01-01 YYZ SFO 548.12 279.28
1 2016-01-01 DFW PDX 111.35 -65.50
2 2016-02-01 YYZ SFO 64.84 342.35
3 2016-02-01 DFW PDX 63.81 61.64
4 2016-03-01 YYZ SFO 614.29 262.83
{'a': {0: 548.12,
1: 111.34999999999999,
2: 64.840000000000003,
3: 63.810000000000002,
4: 614.28999999999996,
5: -207.49000000000001,
6: 151.31999999999999,
7: -56.43,
8: 611.37,
9: -296.62,
10: 6417.5699999999997,
11: -376.25999999999999,
12: 465.12,
13: -821.73000000000002,
14: 1270.6700000000001,
15: -1410.0899999999999,
16: 1312.6600000000001,
17: -326.25999999999999,
18: 1683.3699999999999,
19: -24.440000000000001,
20: 583.60000000000002,
21: -5.2400000000000002,
22: 1122.74,
23: 195.21000000000001,
24: 97.040000000000006,
25: 133.94},
'b': {0: 279.27999999999997,
1: -65.5,
2: 342.35000000000002,
3: 61.640000000000001,
4: 262.82999999999998,
5: 115.89,
6: 268.63999999999999,
7: 2.3500000000000001,
8: 91.849999999999994,
9: 62.119999999999997,
10: 778.33000000000004,
11: -142.78,
12: 1675.53,
13: -214.36000000000001,
14: 983.80999999999995,
15: -207.62,
16: 632.13999999999999,
17: -132.53,
18: 422.36000000000001,
19: 13.470000000000001,
20: 642.73000000000002,
21: -144.59999999999999,
22: 213.15000000000001,
23: -50.200000000000003,
24: 338.27999999999997,
25: -129.69},
'dest': {0: 'SFO',
1: 'PDX',
2: 'SFO',
3: 'PDX',
4: 'SFO',
5: 'PDX',
6: 'SFO',
7: 'PDX',
8: 'SFO',
9: 'PDX',
10: 'SFO',
11: 'PDX',
12: 'SFO',
13: 'PDX',
14: 'SFO',
15: 'PDX',
16: 'SFO',
17: 'PDX',
18: 'SFO',
19: 'PDX',
20: 'SFO',
21: 'PDX',
22: 'SFO',
23: 'PDX',
24: 'SFO',
25: 'PDX'},
'dt': {0: Timestamp('2016-01-01 00:00:00'),
1: Timestamp('2016-01-01 00:00:00'),
2: Timestamp('2016-02-01 00:00:00'),
3: Timestamp('2016-02-01 00:00:00'),
4: Timestamp('2016-03-01 00:00:00'),
5: Timestamp('2016-03-01 00:00:00'),
6: Timestamp('2016-04-01 00:00:00'),
7: Timestamp('2016-04-01 00:00:00'),
8: Timestamp('2016-05-01 00:00:00'),
9: Timestamp('2016-05-01 00:00:00'),
10: Timestamp('2016-06-01 00:00:00'),
11: Timestamp('2016-06-01 00:00:00'),
12: Timestamp('2016-07-01 00:00:00'),
13: Timestamp('2016-07-01 00:00:00'),
14: Timestamp('2016-08-01 00:00:00'),
15: Timestamp('2016-08-01 00:00:00'),
16: Timestamp('2016-09-01 00:00:00'),
17: Timestamp('2016-09-01 00:00:00'),
18: Timestamp('2016-10-01 00:00:00'),
19: Timestamp('2016-10-01 00:00:00'),
20: Timestamp('2016-11-01 00:00:00'),
21: Timestamp('2016-11-01 00:00:00'),
22: Timestamp('2016-12-01 00:00:00'),
23: Timestamp('2016-12-01 00:00:00'),
24: Timestamp('2017-01-01 00:00:00'),
25: Timestamp('2017-01-01 00:00:00')},
'src': {0: 'YYZ',
1: 'DFW',
2: 'YYZ',
3: 'DFW',
4: 'YYZ',
5: 'DFW',
6: 'YYZ',
7: 'DFW',
8: 'YYZ',
9: 'DFW',
10: 'YYZ',
11: 'DFW',
12: 'YYZ',
13: 'DFW',
14: 'YYZ',
15: 'DFW',
16: 'YYZ',
17: 'DFW',
18: 'YYZ',
19: 'DFW',
20: 'YYZ',
21: 'DFW',
22: 'YYZ',
23: 'DFW',
24: 'YYZ',
25: 'DFW'}}
Run Code Online (Sandbox Code Playgroud)
我想要每组src和dest对的百分位数.因此,每对只应有1百分位数值.我只是想给执行百分b其中date = 2017-01-01每个src和dest对整个列a的一对.合理?
我可以手动执行此操作,例如针对特定对i.e. src=YYZ and dest=SFT:
from scipy import stats
import datetime as dt
import pandas as pd
p0 = dt.datetime(2017,1,1)
# lets slice df for src=YYZ and dest = SFO
x = df[(df.src =='YYZ') &
(df.dest =='SFO') &
(df.dt ==p0)].b.values[0]
# given B, what percentile does it fall in for the entire column A for YYZ, SFO
stats.percentileofscore(df['a'],x)
61.53846153846154
Run Code Online (Sandbox Code Playgroud)
在上面的例子中,我手动完成了对YYZ和SFO.但是,我的df中有成千上万对.
我如何vectorize使用pandas features而不是循环遍历每一对?
必须有一种方法来使用groupby和使用apply功能吗?
我想要的df应该是这样的:
src dest percentile
0 YYZ SFO 61.54
1 DFW PDX 23.07
2 XXX YYY blahblah1
3 AAA BBB blahblah2
...
Run Code Online (Sandbox Code Playgroud)
更新:
我实现了以下内容:
def b_percentile_a(df,x,y,b):
z = df[(df['src'] == x ) & (df['dest'] == y)].a
r = stats.percentileofscore(z,b)
return r
b_vector_df = df[df.dt == p0]
b_vector_df['p0_a_percentile_b'] = \
b_vector_df.apply(lambda x: b_percentile_a(df,x.src,x.dest,x.b), axis=1)
Run Code Online (Sandbox Code Playgroud)
成对需要5.16几秒钟100.我有55,000双.所以这需要~50几分钟.我需要运行这个36时间才能several days运行时间.
一定有更快的方法吗?
获得了令人难以置信的节省时间!
输出:
a_list的大小:49998随机化唯一值
percentile_1(您的给定df - scipy)
计算百分位数104次 - 在0:00中的104条记录:07.777022
percentile_9(使用给定df的
PercentileOfScore (rank_searchsorted_list)类别计算百分位数104次 - 在0:00:00.000609中的104条记录
_ dt src dest a b pct scipy _
0: 2016-01-01 YYZ SFO 54812 279.28 74.81299251970079 74.8129925197
1: 2016-01-01 DFW PDX 111.35 -65.5 24.66698667946718 24.6669866795
2: 2016-02-01 YYZ SFO 64.84 342.35 76.4810592423697 76.4810592424
3: 2016-02-01 DFW PDX 63.81 61.64 63.84655386215449 63.8465538622
...
24: 2017-01-01 YYZ SFO 97.04 338.28 76.3570542821712 76.3570542822
25: 2017-01-01 DFW PDX 133.94 -129.69 21.4668586743469 21.4668586743
看看scipy.percentileofscore我的实现,发现整个list( a )
是 - 复制,插入,排序,搜索 - 每次调用percentileofscore.
我实现了自己的 class PercentileOfScore
import numpy as np
class PercentileOfScore(object):
def __init__(self, aList):
self.a = np.array( aList )
self.a.sort()
self.n = float(len(self.a))
self.pct = self.__rank_searchsorted_list
# end def __init__
def __rank_searchsorted_list(self, score_list):
adx = np.searchsorted(self.a, score_list, side='right')
pct = []
for idx in adx:
# Python 2.x needs explicit type casting float(int)
pct.append( (float(idx) / self.n) * 100.0 )
return pct
# end def _rank_searchsorted_list
# end class PercentileOfScore
Run Code Online (Sandbox Code Playgroud)
我认为这不def percentile_7符合您的需求.dt不会考虑.
PctOS = None
def percentile_7(df_flat):
global PctOS
result = {}
for k in df_flat.pair_dict.keys():
# df_flat.pair_dict = { 'src.dst': [b,b,...bn] }
result[k] = PctOS.pct( df_flat.pair_dict[k] )
return result
# end def percentile_7
Run Code Online (Sandbox Code Playgroud)
在您的手动示例中,您可以使用整体df.a.在这个样本中dt_flat.a_list,但我不确定这是否是你想要的?
from PercentileData import DF_flat
def main():
# DF_flat.data = {'dt.src.dest':[a,b]}
df_flat = DF_flat()
# Instantiate Global PctOS
global PctOS
# df_flat.a_list = [a,a,...an]
PctOS = PercentileOfScore(df_flat.a_list)
result = percentile_7(df_flat)
# result = dict{'src.dst':[pct,pct...pctn]}
Run Code Online (Sandbox Code Playgroud)
用Python测试:3.4.2和2.7.9 - numpy:1.8.2
假设您有一个对列表,例如pairs = [[a,b], [c,d], ...]df 已定义,
r = stats.percentileofscore(z,b)
return r
for pair in pairs:
# get the corresponding rows for each pair
bvalues = df.loc[(df['src']==pair[0])&(df['dest']==pair[1])][['a', 'b']]
# apply the percentileofscore map
b_vector_df['p0_a_percentile_b'] = bvalues.b.apply(lambda x: stats.percentileofscore(bvalues.a, x))
Run Code Online (Sandbox Code Playgroud)
我不完全确定目标是什么。我的理解是,您读取每个src、dest对的b值,并查找相应的a值,然后计算该a值的百分位数。让我知道这是否有帮助:)
编辑:假设您仅使用五列date, src, dest, a, and b,您可以考虑使用仅包含这 5 列的数据框的副本。它减少了每个提取步骤所需的工作量。我觉得只使用您需要的数据量会更有效率。
根据 pandas 中多列中的值从数据框中选择行是一个可能与您相关的讨论。
| 归档时间: |
|
| 查看次数: |
608 次 |
| 最近记录: |