Dri*_*erg 17 python pandas scikit-learn sklearn-pandas
我在.csv文件中有一个数据集(dataTrain.csv和dataTest.csv),格式如下:
Temperature(K),Pressure(ATM),CompressibilityFactor(Z)
273.1,24.675,0.806677258
313.1,24.675,0.888394713
...,...,...
Run Code Online (Sandbox Code Playgroud)
并且能够使用以下代码构建回归模型和预测:
import pandas as pd
from sklearn import linear_model
dataTrain = pd.read_csv("dataTrain.csv")
dataTest = pd.read_csv("dataTest.csv")
# print df.head()
x_train = dataTrain['Temperature(K)'].reshape(-1,1)
y_train = dataTrain['CompressibilityFactor(Z)']
x_test = dataTest['Temperature(K)'].reshape(-1,1)
y_test = dataTest['CompressibilityFactor(Z)']
ols = linear_model.LinearRegression()
model = ols.fit(x_train, y_train)
print model.predict(x_test)[0:5]
Run Code Online (Sandbox Code Playgroud)
但是,我想要做的是多元回归.所以,模型将是CompressibilityFactor(Z) = intercept + coef*Temperature(K) + coef*Pressure(ATM)
如何在scikit-learn中做到这一点?
piR*_*red 17
如果您的上述代码适用于单变量,请尝试此操作
import pandas as pd
from sklearn import linear_model
dataTrain = pd.read_csv("dataTrain.csv")
dataTest = pd.read_csv("dataTest.csv")
# print df.head()
x_train = dataTrain[['Temperature(K)', 'Pressure(ATM)']].to_numpy().reshape(-1,2)
y_train = dataTrain['CompressibilityFactor(Z)']
x_test = dataTest[['Temperature(K)', 'Pressure(ATM)']].to_numpy().reshape(-1,2)
y_test = dataTest['CompressibilityFactor(Z)']
ols = linear_model.LinearRegression()
model = ols.fit(x_train, y_train)
print model.predict(x_test)[0:5]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
22446 次 |
最近记录: |