Python:滑动窗口意味着,忽略丢失的数据

Vas*_*dis 5 python numpy time-series scipy missing-data

我目前正在尝试处理具有缺失值的实验时间序列数据集.我想计算该数据集随时间的滑动窗口平均值,同时处理nan值.我这样做的正确方法是在每个窗口内计算有限元的总和,并将其除以它们的数字.这种非线性迫使我使用非卷积方法来解决这个问题,因此我在这个过程中遇到了严重的时间瓶颈.作为我想要完成的代码示例,我提出以下内容:

import numpy as np
#Construct sample data
n = 50
n_miss = 20
win_size = 3
data= np.random.random(50)
data[np.random.randint(0,n-1, n_miss)] = None

#Compute mean
result = np.zeros(data.size)
for count in range(data.size):
    part_data = data[max(count - (win_size - 1) / 2, 0): min(count + (win_size + 1) / 2, data.size)]
    mask = np.isfinite(part_data)
    if np.sum(mask) != 0:
        result[count] = np.sum(part_data[mask]) / np.sum(mask)
    else:
        result[count] = None
print 'Input:\t',data
print 'Output:\t',result
Run Code Online (Sandbox Code Playgroud)

输出:

Input:  [ 0.47431791  0.17620835  0.78495647  0.79894688  0.58334064  0.38068788
  0.87829696         nan  0.71589171         nan  0.70359557  0.76113969
  0.13694387  0.32126573  0.22730891         nan  0.35057169         nan
  0.89251851  0.56226354  0.040117           nan  0.37249799  0.77625334
         nan         nan         nan         nan  0.63227417  0.92781944
  0.99416471  0.81850753  0.35004997         nan  0.80743783  0.60828597
         nan  0.01410721         nan         nan  0.6976317          nan
  0.03875394  0.60924066  0.22998065         nan  0.34476729  0.38090961
         nan  0.2021964 ]
Output: [ 0.32526313  0.47849424  0.5867039   0.72241466  0.58765847  0.61410849
  0.62949242  0.79709433  0.71589171  0.70974364  0.73236763  0.53389305
  0.40644977  0.22850617  0.27428732  0.2889403   0.35057169  0.6215451
  0.72739103  0.49829968  0.30119027  0.20630749  0.57437567  0.57437567
  0.77625334         nan         nan  0.63227417  0.7800468   0.85141944
  0.91349722  0.7209074   0.58427875  0.5787439   0.7078619   0.7078619
  0.31119659  0.01410721  0.01410721  0.6976317   0.6976317   0.36819282
  0.3239973   0.29265842  0.41961066  0.28737397  0.36283845  0.36283845
  0.29155301  0.2021964 ]
Run Code Online (Sandbox Code Playgroud)

这个结果可以通过numpy操作产生,而不使用for循环吗?

jde*_*esa 5

您可以使用rollingPandas 的功能来做到这一点:

import numpy as np
import pandas as pd

#Construct sample data
n = 50
n_miss = 20
win_size = 3
data = np.random.random(n)
data[np.random.randint(0, n-1, n_miss)] = None

windowed_mean = pd.Series(data).rolling(window=win_size, min_periods=1).mean()

print(pd.DataFrame({'Data': data, 'Windowed mean': windowed_mean}) )
Run Code Online (Sandbox Code Playgroud)

输出:

        Data  Windowed mean
0   0.589376       0.589376
1   0.639173       0.614274
2   0.343534       0.524027
3   0.250329       0.411012
4   0.911952       0.501938
5        NaN       0.581141
6   0.224964       0.568458
7        NaN       0.224964
8   0.508419       0.366692
9   0.215418       0.361918
10       NaN       0.361918
11  0.638118       0.426768
12  0.587478       0.612798
13  0.097037       0.440878
14  0.688689       0.457735
15  0.858593       0.548107
16  0.408903       0.652062
17  0.448993       0.572163
18       NaN       0.428948
19  0.877453       0.663223
20       NaN       0.877453
21       NaN       0.877453
22  0.021798       0.021798
23  0.482054       0.251926
24  0.092387       0.198746
25  0.251766       0.275402
26  0.093854       0.146002
27       NaN       0.172810
28       NaN       0.093854
29       NaN            NaN
30  0.965669       0.965669
31  0.695999       0.830834
32       NaN       0.830834
33       NaN       0.695999
34       NaN            NaN
35  0.613727       0.613727
36  0.837533       0.725630
37       NaN       0.725630
38  0.782295       0.809914
39       NaN       0.782295
40  0.777429       0.779862
41  0.401355       0.589392
42  0.491709       0.556831
43  0.127813       0.340292
44  0.781625       0.467049
45  0.960466       0.623301
46  0.637618       0.793236
47  0.651264       0.749782
48  0.154911       0.481264
49  0.159145       0.321773
Run Code Online (Sandbox Code Playgroud)


Div*_*kar 5

这是一种基于卷积的方法,使用np.convolve-

mask = np.isnan(data)
K = np.ones(win_size,dtype=int)
out = np.convolve(np.where(mask,0,data), K)/np.convolve(~mask,K)
Run Code Online (Sandbox Code Playgroud)

请注意,这将在两侧都有一个额外的元素。

如果您正在处理2D数据,我们可以使用Scipy's 2D convolution.

方法 -

def original_app(data, win_size):
    #Compute mean
    result = np.zeros(data.size)
    for count in range(data.size):
        part_data = data[max(count - (win_size - 1) / 2, 0): \
                 min(count + (win_size + 1) / 2, data.size)]
        mask = np.isfinite(part_data)
        if np.sum(mask) != 0:
            result[count] = np.sum(part_data[mask]) / np.sum(mask)
        else:
            result[count] = None
    return result

def numpy_app(data, win_size):     
    mask = np.isnan(data)
    K = np.ones(win_size,dtype=int)
    out = np.convolve(np.where(mask,0,data), K)/np.convolve(~mask,K)
    return out[1:-1]  # Slice out the one-extra elems on sides
Run Code Online (Sandbox Code Playgroud)

样品运行 -

In [118]: #Construct sample data
     ...: n = 50
     ...: n_miss = 20
     ...: win_size = 3
     ...: data= np.random.random(50)
     ...: data[np.random.randint(0,n-1, n_miss)] = np.nan
     ...: 

In [119]: original_app(data, win_size = 3)
Out[119]: 
array([ 0.88356487,  0.86829731,  0.85249541,  0.83776219,         nan,
               nan,  0.61054015,  0.63111926,  0.63111926,  0.65169837,
        0.1857301 ,  0.58335324,  0.42088104,  0.5384565 ,  0.31027752,
        0.40768907,  0.3478563 ,  0.34089655,  0.55462903,  0.71784816,
        0.93195716,         nan,  0.41635575,  0.52211653,  0.65053379,
        0.76762282,  0.72888574,  0.35250449,  0.35250449,  0.14500637,
        0.06997668,  0.22582318,  0.18621848,  0.36320784,  0.19926647,
        0.24506199,  0.09983572,  0.47595439,  0.79792941,  0.5982114 ,
        0.42389375,  0.28944089,  0.36246113,  0.48088139,  0.71105449,
        0.60234163,  0.40012839,  0.45100475,  0.41768466,  0.41768466])

In [120]: numpy_app(data, win_size = 3)
__main__:36: RuntimeWarning: invalid value encountered in divide
Out[120]: 
array([ 0.88356487,  0.86829731,  0.85249541,  0.83776219,         nan,
               nan,  0.61054015,  0.63111926,  0.63111926,  0.65169837,
        0.1857301 ,  0.58335324,  0.42088104,  0.5384565 ,  0.31027752,
        0.40768907,  0.3478563 ,  0.34089655,  0.55462903,  0.71784816,
        0.93195716,         nan,  0.41635575,  0.52211653,  0.65053379,
        0.76762282,  0.72888574,  0.35250449,  0.35250449,  0.14500637,
        0.06997668,  0.22582318,  0.18621848,  0.36320784,  0.19926647,
        0.24506199,  0.09983572,  0.47595439,  0.79792941,  0.5982114 ,
        0.42389375,  0.28944089,  0.36246113,  0.48088139,  0.71105449,
        0.60234163,  0.40012839,  0.45100475,  0.41768466,  0.41768466])
Run Code Online (Sandbox Code Playgroud)

运行时测试 -

In [122]: #Construct sample data
     ...: n = 50000
     ...: n_miss = 20000
     ...: win_size = 3
     ...: data= np.random.random(n)
     ...: data[np.random.randint(0,n-1, n_miss)] = np.nan
     ...: 

In [123]: %timeit original_app(data, win_size = 3)
1 loops, best of 3: 1.51 s per loop

In [124]: %timeit numpy_app(data, win_size = 3)
1000 loops, best of 3: 1.09 ms per loop

In [125]: import pandas as pd

# @jdehesa's pandas solution
In [126]: %timeit pd.Series(data).rolling(window=3, min_periods=1).mean()
100 loops, best of 3: 3.34 ms per loop
Run Code Online (Sandbox Code Playgroud)