Lui*_*uez 25 python machine-learning normalization scikit-learn
我在sklearn中使用MinMaxScaler模型来规范化模型的功能.
training_set = np.random.rand(4,4)*10
training_set
[[ 6.01144787, 0.59753007, 2.0014852 , 3.45433657],
[ 6.03041646, 5.15589559, 6.64992437, 2.63440202],
[ 2.27733136, 9.29927394, 0.03718093, 7.7679183 ],
[ 9.86934288, 7.59003904, 6.02363739, 2.78294206]]
scaler = MinMaxScaler()
scaler.fit(training_set)
scaler.transform(training_set)
[[ 0.49184811, 0. , 0.29704831, 0.15972182],
[ 0.4943466 , 0.52384506, 1. , 0. ],
[ 0. , 1. , 0. , 1. ],
[ 1. , 0.80357559, 0.9052909 , 0.02893534]]
Run Code Online (Sandbox Code Playgroud)
现在我想使用相同的缩放器来规范化测试集:
[[ 8.31263467, 7.99782295, 0.02031658, 9.43249727],
[ 1.03761228, 9.53173021, 5.99539478, 4.81456067],
[ 0.19715961, 5.97702519, 0.53347403, 5.58747666],
[ 9.67505429, 2.76225253, 7.39944931, 8.46746594]]
Run Code Online (Sandbox Code Playgroud)
但我不想这样一直使用scaler.fit()和训练数据.有没有办法保存缩放器并稍后从其他文件加载?
Iva*_*ner 61
甚至比pickle(创建比这个方法更大的文件)更好,你可以使用sklearn内置工具:
from sklearn.externals import joblib
scaler_filename = "scaler.save"
joblib.dump(scaler, scaler_filename)
# And now to load...
scaler = joblib.load(scaler_filename)
Run Code Online (Sandbox Code Playgroud)
Eng*_*ero 24
只是一个sklearn.externals.joblib已被弃用并被普通 old 取代的注释,joblib可以安装pip install joblib:
import joblib
joblib.dump(my_scaler, 'scaler.gz')
my_scaler = joblib.load('scaler.gz')
Run Code Online (Sandbox Code Playgroud)
请注意,文件扩展名可以是任何内容,但如果是其中之一,['.z', '.gz', '.bz2', '.xz', '.lzma']则将使用相应的压缩协议。文档joblib.dump()和joblib.load()方法。
jla*_*s32 19
所以我实际上不是这方面的专家,但是通过一些研究和一些有用的链接,我认为pickle并且sklearn.externals.joblib将成为你的朋友.
该软件包pickle允许您将模型或"转储"模型保存到文件中.
我认为这个链接也很有帮助.它讨论了创建持久性模型.你想要尝试的东西是:
# could use: import pickle... however let's do something else
from sklearn.externals import joblib
# this is more efficient than pickle for things like large numpy arrays
# ... which sklearn models often have.
# then just 'dump' your file
joblib.dump(clf, 'my_dope_model.pkl')
Run Code Online (Sandbox Code Playgroud)
在这里您可以了解更多关于sklearn外部的信息.
如果这没有帮助,或者我不了解您的模型,请告诉我.
您可以使用pickle,来保存缩放器:
import pickle
scalerfile = 'scaler.sav'
pickle.dump(scaler, open(scalerfile, 'wb'))
Run Code Online (Sandbox Code Playgroud)
加载它:
import pickle
scalerfile = 'scaler.sav'
scaler = pickle.load(open(scalerfile, 'rb'))
test_scaled_set = scaler.transform(test_set)
Run Code Online (Sandbox Code Playgroud)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.externals import joblib
pipeline = make_pipeline(MinMaxScaler(),YOUR_ML_MODEL() )
model = pipeline.fit(X_train, y_train)
Run Code Online (Sandbox Code Playgroud)
joblib.dump(model, 'filename.mod')
Run Code Online (Sandbox Code Playgroud)
model = joblib.load('filename.mod')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
24819 次 |
| 最近记录: |