Ano*_*oop 6 python rank python-3.x pandas
我试图根据两列对大熊猫数据框进行排名.我可以根据一列对其进行排名,但如何根据两列对其进行排名?'SaleCount',然后'TotalRevenue'?
import pandas as pd
df = pd.DataFrame({'TotalRevenue':[300,9000,1000,750,500,2000,0,600,50,500],
'Date':['2016-12-02' for i in range(10)],
'SaleCount':[10,100,30,35,20,100,0,30,2,20],
'shops':['S3','S2','S1','S5','S4','S8','S6','S7','S9','S10']})
df['Rank'] = df.SaleCount.rank(method='dense',ascending = False).astype(int)
#df['Rank'] = df.TotalRevenue.rank(method='dense',ascending = False).astype(int)
df.sort_values(['Rank'], inplace=True)
print(df)
Run Code Online (Sandbox Code Playgroud)
电流输出:
Date SaleCount TotalRevenue shops Rank
1 2016-12-02 100 9000 S2 1
5 2016-12-06 100 2000 S8 1
3 2016-12-04 35 750 S5 2
2 2016-12-03 30 1000 S1 3
7 2016-12-08 30 600 S7 3
9 2016-12-10 20 500 S10 4
4 2016-12-05 20 500 S4 4
0 2016-12-01 10 300 S3 5
8 2016-12-09 2 50 S9 6
6 2016-12-07 0 0 S6 7
Run Code Online (Sandbox Code Playgroud)
我正在尝试生成这样的输出:
Date SaleCount TotalRevenue shops Rank
1 2016-12-02 100 9000 S2 1
5 2016-12-02 100 2000 S8 2
3 2016-12-02 35 750 S5 3
2 2016-12-02 30 1000 S1 4
7 2016-12-02 30 600 S7 5
9 2016-12-02 20 500 S10 6
4 2016-12-02 20 500 S4 6
0 2016-12-02 10 300 S3 7
8 2016-12-02 2 50 S9 8
6 2016-12-02 0 0 S6 9
Run Code Online (Sandbox Code Playgroud)
Nic*_*eli 10
另一种方法是将两个感兴趣的列进行类型转换str,并通过连接它们来组合它们.将它们转换回数值,以便根据它们的大小区分它们.
在method=dense,重复值的排名将保持不变.(这里:6)
由于您希望按降序对这些进行排名,因此指定ascending=Falsein Series.rank()将使您获得所需的结果.
col1 = df["SaleCount"].astype(str)
col2 = df["TotalRevenue"].astype(str)
df['Rank'] = (col1+col2).astype(int).rank(method='dense', ascending=False).astype(int)
df.sort_values('Rank')
Run Code Online (Sandbox Code Playgroud)
B. *_* M. 10
这样做的通用方法是将所需的字段分组在一个元组中,无论类型如何。
df["Rank"] = df[["SaleCount","TotalRevenue"]].apply(tuple,axis=1)\
.rank(method='dense',ascending=False).astype(int)
df.sort_values("Rank")
TotalRevenue Date SaleCount shops Rank
1 9000 2016-12-02 100 S2 1
5 2000 2016-12-02 100 S8 2
3 750 2016-12-02 35 S5 3
2 1000 2016-12-02 30 S1 4
7 600 2016-12-02 30 S7 5
4 500 2016-12-02 20 S4 6
9 500 2016-12-02 20 S10 6
0 300 2016-12-02 10 S3 7
8 50 2016-12-02 2 S9 8
6 0 2016-12-02 0 S6 9
Run Code Online (Sandbox Code Playgroud)
pd.factorize将为iterable的每个唯一元素生成唯一值.我们只需按照我们想要的顺序排序,然后进行分解.为了执行多个列,我们将排序结果转换为元组.
cols = ['SaleCount', 'TotalRevenue']
tups = df[cols].sort_values(cols, ascending=False).apply(tuple, 1)
f, i = pd.factorize(tups)
factorized = pd.Series(f + 1, tups.index)
df.assign(Rank=factorized)
Date SaleCount TotalRevenue shops Rank
1 2016-12-02 100 9000 S2 1
5 2016-12-02 100 2000 S8 2
3 2016-12-02 35 750 S5 3
2 2016-12-02 30 1000 S1 4
7 2016-12-02 30 600 S7 5
4 2016-12-02 20 500 S4 6
9 2016-12-02 20 500 S10 6
0 2016-12-02 10 300 S3 7
8 2016-12-02 2 50 S9 8
6 2016-12-02 0 0 S6 9
Run Code Online (Sandbox Code Playgroud)
sort_values+GroupBy.ngroup这将给出dense排名。
应在分组之前按所需顺序对列进行排序。sort=False在 then中指定groupby会尊重这种排序,以便组按照它们在排序的 DataFrame 中出现的顺序进行标记。
cols = ['SaleCount', 'TotalRevenue']
df['Rank'] = df.sort_values(cols, ascending=False).groupby(cols, sort=False).ngroup() + 1
Run Code Online (Sandbox Code Playgroud)
输出:
print(df.sort_values('Rank'))
TotalRevenue Date SaleCount shops Rank
1 9000 2016-12-02 100 S2 1
5 2000 2016-12-02 100 S8 2
3 750 2016-12-02 35 S5 3
2 1000 2016-12-02 30 S1 4
7 600 2016-12-02 30 S7 5
4 500 2016-12-02 20 S4 6
9 500 2016-12-02 20 S10 6
0 300 2016-12-02 10 S3 7
8 50 2016-12-02 2 S9 8
6 0 2016-12-02 0 S6 9
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8363 次 |
| 最近记录: |