use*_*212 11 keras keras-layer
如何添加调整大小图层
model = Sequential()
Run Code Online (Sandbox Code Playgroud)
运用
model.add(...)
Run Code Online (Sandbox Code Playgroud)
要将图像从形状(160,320,3)调整为(224,224,3)?
我认为你应该考虑使用tensorflow的resize_images图层.
https://www.tensorflow.org/api_docs/python/tf/image/resize_images
似乎keras不包括这个,也许是因为theano中不存在该功能.我写了一个自定义keras层,它做了同样的事情.这是一个快速的黑客,所以它可能不适合你的情况.
import keras
import keras.backend as K
from keras.utils import conv_utils
from keras.engine import InputSpec
from keras.engine import Layer
from tensorflow import image as tfi
class ResizeImages(Layer):
"""Resize Images to a specified size
# Arguments
output_size: Size of output layer width and height
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
# Input shape
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, rows, cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, rows, cols)`
# Output shape
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, pooled_rows, pooled_cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, pooled_rows, pooled_cols)`
"""
def __init__(self, output_dim=(1, 1), data_format=None, **kwargs):
super(ResizeImages, self).__init__(**kwargs)
data_format = conv_utils.normalize_data_format(data_format)
self.output_dim = conv_utils.normalize_tuple(output_dim, 2, 'output_dim')
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=4)
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
def compute_output_shape(self, input_shape):
if self.data_format == 'channels_first':
return (input_shape[0], input_shape[1], self.output_dim[0], self.output_dim[1])
elif self.data_format == 'channels_last':
return (input_shape[0], self.output_dim[0], self.output_dim[1], input_shape[3])
def _resize_fun(self, inputs, data_format):
try:
assert keras.backend.backend() == 'tensorflow'
assert self.data_format == 'channels_last'
except AssertionError:
print "Only tensorflow backend is supported for the resize layer and accordingly 'channels_last' ordering"
output = tfi.resize_images(inputs, self.output_dim)
return output
def call(self, inputs):
output = self._resize_fun(inputs=inputs, data_format=self.data_format)
return output
def get_config(self):
config = {'output_dim': self.output_dim,
'padding': self.padding,
'data_format': self.data_format}
base_config = super(ResizeImages, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
Run Code Online (Sandbox Code Playgroud)
可接受的答案使用Reshape层,该层的工作方式类似于NumPy的reshape,可用于将4x4矩阵整形为2x8矩阵,但这将导致图像丢失位置信息:
0 0 0 0
1 1 1 1 -> 0 0 0 0 1 1 1 1
2 2 2 2 2 2 2 2 3 3 3 3
3 3 3 3
Run Code Online (Sandbox Code Playgroud)
相反,应该使用例如Tensorflowsimage_resize缩放图像数据/“调整大小” 。但是要注意正确的用法和错误!如相关问题所示,它可以与lambda层一起使用:
model.add( keras.layers.Lambda(
lambda image: tf.image.resize_images(
image,
(224, 224),
method = tf.image.ResizeMethod.BICUBIC,
align_corners = True, # possibly important
preserve_aspect_ratio = True
)
))
Run Code Online (Sandbox Code Playgroud)
对于您的情况,由于您具有160x320的图像,因此还必须决定是否保留宽高比。如果要使用预先训练的网络,则应该使用与训练网络相同的调整大小。
nem*_*emo -6
通常你会使用Reshape该层:
model.add(Reshape((224,224,3), input_shape=(160,320,3))
Run Code Online (Sandbox Code Playgroud)
但由于您的目标维度不允许保存输入维度 ( 224*224 != 160*320) 中的所有数据,因此这不起作用。Reshape仅当元素数量不变时才可以使用。
如果您愿意丢失图像中的一些数据,您可以指定自己的有损重塑:
model.add(Reshape(-1,3), input_shape=(160,320,3))
model.add(Lambda(lambda x: x[:50176])) # throw away some, so that #data = 224^2
model.add(Reshape(224,224,3))
Run Code Online (Sandbox Code Playgroud)
也就是说,这些转换通常是在将数据应用到模型之前完成的,因为如果在每个训练步骤中都这样做,这本质上是浪费计算时间。
| 归档时间: |
|
| 查看次数: |
10631 次 |
| 最近记录: |