python pandas .apply() 函数索引错误

ard*_*dms 3 python pandas

我有以下数据帧:

                              P     N  ID  Year  Month
TS                                                    
2016-06-26 19:30:00  263.600006   5.4   5  2016      6
2016-06-26 20:00:00  404.700012   5.6   5  2016      6
2016-06-26 21:10:00  438.600006   6.0   5  2016      6
2016-06-26 21:20:00  218.600006   5.6   5  2016      6
2016-07-02 16:10:00  285.300049  15.1   5  2016      7
Run Code Online (Sandbox Code Playgroud)

我正在尝试根据列的值YearMonth类似以下内容添加一个新列

def exp_records(row):
    return calendar.monthrange(row['Year'], row['Month'])[1]
df['exp_counts'] = df.apply(exp_records, axis=1)
Run Code Online (Sandbox Code Playgroud)

但我收到以下错误:

类型错误:('预期整数参数,得到浮点','发生在索引 2016-06-26 19:30:00')

但是reset_index(),如果我是整数,那么上述.apply()工作正常。这是预期的行为吗?

我在 Python 3.4 中使用 Pandas 0.19.1


重新创建 DataFrame 的代码:

s = '''
TS,P,N,ID,Year,Month
2016-06-26 19:30:00,263.600006,5.4,5,2016,6
2016-06-26 20:00:00,404.700012,5.6,5,2016,6
2016-06-26 21:10:00,438.600006,6.0,5,2016,6
2016-06-26 21:20:00,218.600006,5.6,5,2016,6
2016-07-02 16:10:00,285.300049,15.1,5,2016,7
'''

df = pd.read_csv(pd.compat.StringIO(s), index_col=0, parse_dates=True)
Run Code Online (Sandbox Code Playgroud)

Mik*_*ler 5

解决方案

使用df[['Year', 'Month']]的应用:

df['exp_counts'] = df[['Year', 'Month']].apply(exp_records, axis=1)
Run Code Online (Sandbox Code Playgroud)

结果:

                              P     N  ID  Year  Month  exp_counts
TS                                                                
2016-06-26 19:30:00  263.600006   5.4   5  2016      6          30
2016-06-26 20:00:00  404.700012   5.6   5  2016      6          30
2016-06-26 21:10:00  438.600006   6.0   5  2016      6          30
2016-06-26 21:20:00  218.600006   5.6   5  2016      6          30
2016-07-02 16:10:00  285.300049  15.1   5  2016      7          31
Run Code Online (Sandbox Code Playgroud)

原因

虽然您的YearMonth列是整数:

df.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 5 entries, 2016-06-26 19:30:00 to 2016-07-02 16:10:00
Data columns (total 5 columns):
P        5 non-null float64
N        5 non-null float64
ID       5 non-null int64
Year     5 non-null int64
Month    5 non-null int64
dtypes: float64(2), int64(3)
memory usage: 240.0 bytes
Run Code Online (Sandbox Code Playgroud)

您按行访问它们,这使它们浮动:

df.T.info()

<class 'pandas.core.frame.DataFrame'>
Index: 5 entries, P to Month
Data columns (total 5 columns):
2016-06-26 19:30:00    5 non-null float64
2016-06-26 20:00:00    5 non-null float64
2016-06-26 21:10:00    5 non-null float64
2016-06-26 21:20:00    5 non-null float64
2016-07-02 16:10:00    5 non-null float64
dtypes: float64(5)
memory usage: 240.0+ bytes
Run Code Online (Sandbox Code Playgroud)

由于df.apply(exp_records, axis=1)逐行,您基本上转换为行。

这是你得到exp_recordsrow

P         263.600006
N           5.400000
ID          5.000000
Year     2016.000000
Month       6.000000
Name: 2016-06-26T19:30:00.000000000, dtype: float64
Run Code Online (Sandbox Code Playgroud)

创建与列的数据帧YearMonth只,并导致转换为浮动,因为两列一个整数:

df[['Year', 'Month']].T.info()

<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, Year to Month
Data columns (total 5 columns):
2016-06-26 19:30:00    2 non-null int64
2016-06-26 20:00:00    2 non-null int64
2016-06-26 21:10:00    2 non-null int64
2016-06-26 21:20:00    2 non-null int64
2016-07-02 16:10:00    2 non-null int64
dtypes: int64(5)
memory usage: 96.0+ bytes
Run Code Online (Sandbox Code Playgroud)