Haz*_*din 16 python deep-learning lstm tensorflow
Tensorflow r0.12的tf.nn.rnn_cell.LSTMCell文档将其描述为init:
tf.nn.rnn_cell.LSTMCell.__call__(inputs, state, scope=None)
Run Code Online (Sandbox Code Playgroud)
其中state
如下:
state:如果state_is_tuple为False,则必须是状态Tensor,2-D,batch x state_size.如果state_is_tuple为True,则它必须是状态Tensors的元组,两者都是2-D,列大小为c_state和m_state.
它们是什么c_state
以及m_state
它们如何适合LSTM?我在文档中的任何地方都找不到对它们的引用.
Fra*_*urt 19
我同意文件不清楚.看一下tf.nn.rnn_cell.LSTMCell.__call__
澄清(我从TensorFlow 1.0.0获取代码):
def __call__(self, inputs, state, scope=None):
"""Run one step of LSTM.
Args:
inputs: input Tensor, 2D, batch x num_units.
state: if `state_is_tuple` is False, this must be a state Tensor,
`2-D, batch x state_size`. If `state_is_tuple` is True, this must be a
tuple of state Tensors, both `2-D`, with column sizes `c_state` and
`m_state`.
scope: VariableScope for the created subgraph; defaults to "lstm_cell".
Returns:
A tuple containing:
- A `2-D, [batch x output_dim]`, Tensor representing the output of the
LSTM after reading `inputs` when previous state was `state`.
Here output_dim is:
num_proj if num_proj was set,
num_units otherwise.
- Tensor(s) representing the new state of LSTM after reading `inputs` when
the previous state was `state`. Same type and shape(s) as `state`.
Raises:
ValueError: If input size cannot be inferred from inputs via
static shape inference.
"""
num_proj = self._num_units if self._num_proj is None else self._num_proj
if self._state_is_tuple:
(c_prev, m_prev) = state
else:
c_prev = array_ops.slice(state, [0, 0], [-1, self._num_units])
m_prev = array_ops.slice(state, [0, self._num_units], [-1, num_proj])
dtype = inputs.dtype
input_size = inputs.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Could not infer input size from inputs.get_shape()[-1]")
with vs.variable_scope(scope or "lstm_cell",
initializer=self._initializer) as unit_scope:
if self._num_unit_shards is not None:
unit_scope.set_partitioner(
partitioned_variables.fixed_size_partitioner(
self._num_unit_shards))
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
lstm_matrix = _linear([inputs, m_prev], 4 * self._num_units, bias=True,
scope=scope)
i, j, f, o = array_ops.split(
value=lstm_matrix, num_or_size_splits=4, axis=1)
# Diagonal connections
if self._use_peepholes:
with vs.variable_scope(unit_scope) as projection_scope:
if self._num_unit_shards is not None:
projection_scope.set_partitioner(None)
w_f_diag = vs.get_variable(
"w_f_diag", shape=[self._num_units], dtype=dtype)
w_i_diag = vs.get_variable(
"w_i_diag", shape=[self._num_units], dtype=dtype)
w_o_diag = vs.get_variable(
"w_o_diag", shape=[self._num_units], dtype=dtype)
if self._use_peepholes:
c = (sigmoid(f + self._forget_bias + w_f_diag * c_prev) * c_prev +
sigmoid(i + w_i_diag * c_prev) * self._activation(j))
else:
c = (sigmoid(f + self._forget_bias) * c_prev + sigmoid(i) *
self._activation(j))
if self._cell_clip is not None:
# pylint: disable=invalid-unary-operand-type
c = clip_ops.clip_by_value(c, -self._cell_clip, self._cell_clip)
# pylint: enable=invalid-unary-operand-type
if self._use_peepholes:
m = sigmoid(o + w_o_diag * c) * self._activation(c)
else:
m = sigmoid(o) * self._activation(c)
if self._num_proj is not None:
with vs.variable_scope("projection") as proj_scope:
if self._num_proj_shards is not None:
proj_scope.set_partitioner(
partitioned_variables.fixed_size_partitioner(
self._num_proj_shards))
m = _linear(m, self._num_proj, bias=False, scope=scope)
if self._proj_clip is not None:
# pylint: disable=invalid-unary-operand-type
m = clip_ops.clip_by_value(m, -self._proj_clip, self._proj_clip)
# pylint: enable=invalid-unary-operand-type
new_state = (LSTMStateTuple(c, m) if self._state_is_tuple else
array_ops.concat([c, m], 1))
return m, new_state
Run Code Online (Sandbox Code Playgroud)
关键是:
c = (sigmoid(f + self._forget_bias) * c_prev + sigmoid(i) *
self._activation(j))
Run Code Online (Sandbox Code Playgroud)
和
m = sigmoid(o) * self._activation(c)
Run Code Online (Sandbox Code Playgroud)
和
new_state = (LSTMStateTuple(c, m)
Run Code Online (Sandbox Code Playgroud)
如果比较的代码,以计算c
和m
与所述LSTM方程(见下文),可以看到它对应于小区状态(通常表示为c
)和隐藏状态(通常表示为h
),分别为:
new_state = (LSTMStateTuple(c, m)
表示返回状态元组的第一个元素是c
(cell state aka c_state
),返回状态元组的第二个元素是m
(hidden state aka m_state
).
avl*_*oss 14
我偶然发现了同样的问题,这是我理解的方式!简约LSTM示例:
import tensorflow as tf
sample_input = tf.constant([[1,2,3]],dtype=tf.float32)
LSTM_CELL_SIZE = 2
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(LSTM_CELL_SIZE, state_is_tuple=True)
state = (tf.zeros([1,LSTM_CELL_SIZE]),)*2
output, state_new = lstm_cell(sample_input, state)
init_op = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init_op)
print sess.run(output)
Run Code Online (Sandbox Code Playgroud)
请注意,state_is_tuple=True
当传递state
给它时cell
,它需要在tuple
表单中.c_state
并且m_state
可能是"记忆状态"和"细胞状态",但我老实说不确定,因为这些术语仅在文档中提及.在代码和论文中LSTM
- 字母h
和c
常用于表示"输出值"和"单元状态".
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
这些张量代表单元格的组合内部状态,应该一起传递.旧的方法是简单地连接它们,而新的方法是使用元组.
老路:
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(LSTM_CELL_SIZE, state_is_tuple=False)
state = tf.zeros([1,LSTM_CELL_SIZE*2])
output, state_new = lstm_cell(sample_input, state)
Run Code Online (Sandbox Code Playgroud)
新方法:
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(LSTM_CELL_SIZE, state_is_tuple=True)
state = (tf.zeros([1,LSTM_CELL_SIZE]),)*2
output, state_new = lstm_cell(sample_input, state)
Run Code Online (Sandbox Code Playgroud)
所以,基本上我们所做的一切,都是state
从1张长度4
变成两张长度的张量2
.内容保持不变.[0,0,0,0]
成为([0,0],[0,0])
.(这应该让它更快)
归档时间: |
|
查看次数: |
9070 次 |
最近记录: |