one*_*ser 14 python data-analysis pandas
鉴于我有以下两个向量:
In [99]: time_index
Out[99]:
[1484942413,
1484942712,
1484943012,
1484943312,
1484943612,
1484943912,
1484944212,
1484944511,
1484944811,
1484945110]
In [100]: bytes_in
Out[100]:
[1293981210388,
1293981379944,
1293981549960,
1293981720866,
1293981890968,
1293982062261,
1293982227492,
1293982391244,
1293982556526,
1293982722320]
Run Code Online (Sandbox Code Playgroud)
其中bytes_in是仅增量计数器,time_index是unix时间戳(epoch)的列表.
目标:我想要计算的是比特率.
这意味着我将构建一个数据框
In [101]: timeline = pandas.to_datetime(time_index, unit="s")
In [102]: recv = pandas.Series(bytes_in, timeline).resample("300S").mean().ffill().apply(lambda i: i*8)
In [103]: recv
Out[103]:
2017-01-20 20:00:00 10351849683104
2017-01-20 20:05:00 10351851039552
2017-01-20 20:10:00 10351852399680
2017-01-20 20:15:00 10351853766928
2017-01-20 20:20:00 10351855127744
2017-01-20 20:25:00 10351856498088
2017-01-20 20:30:00 10351857819936
2017-01-20 20:35:00 10351859129952
2017-01-20 20:40:00 10351860452208
2017-01-20 20:45:00 10351861778560
Freq: 300S, dtype: int64
Run Code Online (Sandbox Code Playgroud)
问:现在,奇怪的是,手动计算渐变给了我:
In [104]: (bytes_in[1]-bytes_in[0])*8/300
Out[104]: 4521.493333333333
Run Code Online (Sandbox Code Playgroud)
这是正确的值..
用熊猫计算梯度给了我
In [124]: recv.diff()
Out[124]:
2017-01-20 20:00:00 NaN
2017-01-20 20:05:00 1356448.0
2017-01-20 20:10:00 1360128.0
2017-01-20 20:15:00 1367248.0
2017-01-20 20:20:00 1360816.0
2017-01-20 20:25:00 1370344.0
2017-01-20 20:30:00 1321848.0
2017-01-20 20:35:00 1310016.0
2017-01-20 20:40:00 1322256.0
2017-01-20 20:45:00 1326352.0
Freq: 300S, dtype: float64
Run Code Online (Sandbox Code Playgroud)
与上述不同,1356448.0与4521.493333333333不同
你能不能指导我做错了什么?
piR*_*red 18
pd.Series.diff()只有差异.它也不会除以指数的差值.
这可以得到答案
recv.diff() / recv.index.to_series().diff().dt.total_seconds()
2017-01-20 20:00:00 NaN
2017-01-20 20:05:00 4521.493333
2017-01-20 20:10:00 4533.760000
2017-01-20 20:15:00 4557.493333
2017-01-20 20:20:00 4536.053333
2017-01-20 20:25:00 4567.813333
2017-01-20 20:30:00 4406.160000
2017-01-20 20:35:00 4366.720000
2017-01-20 20:40:00 4407.520000
2017-01-20 20:45:00 4421.173333
Freq: 300S, dtype: float64
Run Code Online (Sandbox Code Playgroud)
您也可以使用numpy.gradient传递bytes_in和期望的delta.这不会将长度减少一个,而是对边缘进行假设.
np.gradient(bytes_in, 300) * 8
array([ 4521.49333333, 4527.62666667, 4545.62666667, 4546.77333333,
4551.93333333, 4486.98666667, 4386.44 , 4387.12 ,
4414.34666667, 4421.17333333])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
18772 次 |
| 最近记录: |