zig*_*tar 5 c java arrays performance bit-manipulation
我一直在为这个问题绊绊(例如在这个问题中)。以原始整数类型数组(例如的数组)的形式给定2D位矩阵/板/数组long。为简单起见,我们可以假设一个方阵,例如,long在具有64位的平台上,由64个值组成的数组long。
让我们x[i]为0 <= i < 64是输入数组。计算数组y[i]以0 <= i <= 64使:
(x[i] >> j) & 1 == (y[j] >> i) & 1
Run Code Online (Sandbox Code Playgroud)
这x >> i是xby i位的按位右移,&是和,x[i]是iarray 中第th个位置的值x。
如何实现最有效地将数组映射x到数组的功能y?
我主要是在寻找非破坏性的方法,这些方法会使输入数组x保持完整。
使用的编程语言应具有整数类型的数组和按位运算。许多语言都满足这些要求。C / C ++和Java解决方案看起来非常相似,所以让我们选择这些语言。
Fre*_*ijk 10
这似乎是问题Bitwise transpose of 8 bytes的概括。这个问题只是关于 8x8 换位,所以你问的有点不同。但你的问题在《Hacker's Delight》一书的第 7.3 节中也得到了解答(你也许可以在 Google 图书上看到相关页面)。那里提供的代码显然源自Guy Steele。
Hacker 's Delight 网站仅包含本书中8x8和32x32情况的源代码,但后者可以简单地推广到 64x64 情况:
#include <stdint.h>
void
transpose64(uint64_t a[64]) {
int j, k;
uint64_t m, t;
for (j = 32, m = 0x00000000FFFFFFFF; j; j >>= 1, m ^= m << j) {
for (k = 0; k < 64; k = ((k | j) + 1) & ~j) {
t = (a[k] ^ (a[k | j] >> j)) & m;
a[k] ^= t;
a[k | j] ^= (t << j);
}
}
}
Run Code Online (Sandbox Code Playgroud)
其工作方式是,该函数依次交换较小的位块,从 32x32 块开始(不调换这些块内的位),之后在这些 32x32 块内交换相应的 16x16 块,依此类推。块大小为j. 因此,外循环j依次取值32、16、8、4、2和1,这意味着外循环运行了六次。内部循环运行一半的位行,即变量中给定位k等于零的行。当j为 32 时,这些是第 0-31 行;当j为 16 时,这些是第 0-15 行和 32-47 行,等等。循环的内部部分总共运行 6*32 = 192 次。在这个内部部分中发生的事情是,掩码m确定在异或中应该交换哪些位,t或者计算那些位,并且使用异或的位列表来适当地更新两个位置中的位。
本书(和网站)还有此代码的一个版本,其中这些循环都已展开,并且m不计算掩码,而只是分配。我想这取决于寄存器的数量和指令缓存的大小等因素,这是否是一种改进?
为了测试它是否有效,假设我们定义了一些位模式,例如:
uint64_t logo[] = {
0b0000000000000000000000000000000000000000000100000000000000000000,
0b0000000000000000000000000000000000000000011100000000000000000000,
0b0000000000000000000000000000000000000000111110000000000000000000,
0b0000000000000000000000000000000000000001111111000000000000000000,
0b0000000000000000000000000000000000000000111111100000000000000000,
0b0000000000000000000000000000000000000000111111100000000000000000,
0b0000000000000000000000000000000000000000011111110000000000000000,
0b0000000000000000000000000000000000000000001111111000000000000000,
0b0000000000000000000000000000000000000000001111111100000000000000,
0b0000000000000000000000000000000010000000000111111100000000000000,
0b0000000000000000000000000000000011100000000011111110000000000000,
0b0000000000000000000000000000000111110000000001111111000000000000,
0b0000000000000000000000000000001111111000000001111111100000000000,
0b0000000000000000000000000000011111111100000000111111100000000000,
0b0000000000000000000000000000001111111110000000011111110000000000,
0b0000000000000000000000000000000011111111100000001111111000000000,
0b0000000000000000000000000000000001111111110000001111111100000000,
0b0000000000000000000000000000000000111111111000000111111100000000,
0b0000000000000000000000000000000000011111111100000011111110000000,
0b0000000000000000000000000000000000001111111110000001111111000000,
0b0000000000000000000000000000000000000011111111100001111111100000,
0b0000000000000000000000001100000000000001111111110000111111100000,
0b0000000000000000000000001111000000000000111111111000011111110000,
0b0000000000000000000000011111110000000000011111111100001111100000,
0b0000000000000000000000011111111100000000001111111110001111000000,
0b0000000000000000000000111111111111000000000011111111100110000000,
0b0000000000000000000000011111111111110000000001111111110000000000,
0b0000000000000000000000000111111111111100000000111111111000000000,
0b0000000000000000000000000001111111111111100000011111110000000000,
0b0000000000000000000000000000011111111111111000001111100000000000,
0b0000000000000000000000000000000111111111111110000011000000000000,
0b0000000000000000000000000000000001111111111111100000000000000000,
0b0000000000000000000000000000000000001111111111111000000000000000,
0b0000000000000000000000000000000000000011111111111100000000000000,
0b0000000000000000000111000000000000000000111111111100000000000000,
0b0000000000000000000111111110000000000000001111111000000000000000,
0b0000000000000000000111111111111100000000000011111000000000000000,
0b0000000000000000000111111111111111110000000000110000000000000000,
0b0000000000000000001111111111111111111111100000000000000000000000,
0b0000000000000000001111111111111111111111111111000000000000000000,
0b0000000000000000000000011111111111111111111111100000000000000000,
0b0000001111110000000000000001111111111111111111100000111111000000,
0b0000001111110000000000000000000011111111111111100000111111000000,
0b0000001111110000000000000000000000000111111111100000111111000000,
0b0000001111110000000000000000000000000000001111000000111111000000,
0b0000001111110000000000000000000000000000000000000000111111000000,
0b0000001111110000000000000000000000000000000000000000111111000000,
0b0000001111110000001111111111111111111111111111000000111111000000,
0b0000001111110000001111111111111111111111111111000000111111000000,
0b0000001111110000001111111111111111111111111111000000111111000000,
0b0000001111110000001111111111111111111111111111000000111111000000,
0b0000001111110000001111111111111111111111111111000000111111000000,
0b0000001111110000001111111111111111111111111111000000111111000000,
0b0000001111110000000000000000000000000000000000000000111111000000,
0b0000001111110000000000000000000000000000000000000000111111000000,
0b0000001111110000000000000000000000000000000000000000111111000000,
0b0000001111110000000000000000000000000000000000000000111111000000,
0b0000001111110000000000000000000000000000000000000000111111000000,
0b0000001111111111111111111111111111111111111111111111111111000000,
0b0000001111111111111111111111111111111111111111111111111111000000,
0b0000001111111111111111111111111111111111111111111111111111000000,
0b0000001111111111111111111111111111111111111111111111111111000000,
0b0000001111111111111111111111111111111111111111111111111111000000,
0b0000001111111111111111111111111111111111111111111111111111000000,
};
Run Code Online (Sandbox Code Playgroud)
然后我们调用该transpose32函数并打印结果位模式:
#include <stdio.h>
void
printbits(uint64_t a[64]) {
int i, j;
for (i = 0; i < 64; i++) {
for (j = 63; j >= 0; j--)
printf("%c", (a[i] >> j) & 1 ? '1' : '0');
printf("\n");
}
}
int
main() {
transpose64(logo);
printbits(logo);
return 0;
}
Run Code Online (Sandbox Code Playgroud)
然后给出输出:
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000011111111111111111111111
0000000000000000000000000000000000000000011111111111111111111111
0000000000000000000000000000000000000000011111111111111111111111
0000000000000000000000000000000000000000011111111111111111111111
0000000000000000000000000000000000000000011111111111111111111111
0000000000000000000000000000000000000000011111111111111111111111
0000000000000000000000000000000000000000000000000000000000111111
0000000000000000000000000000000000000000000000000000000000111111
0000000000000000000000000000000000000000000000000000000000111111
0000000000000000000000000000000000000000000000000000000000111111
0000000000000000000000000000000000000000000000000000000000111111
0000000000000000000000000000000000000000000000000000000000111111
0000000000000000000000000000000000000011000000011111100000111111
0000000000000000000000000000000000111111000000011111100000111111
0000000000000000000000000000000000111111000000011111100000111111
0000000000000000000000000000000000111111000000011111100000111111
0000000000000000000000000100000000011111000000011111100000111111
0000000000000000000000011110000000011111100000011111100000111111
0000000000000000000001111110000000011111100000011111100000111111
0000000000000000000001111111000000011111100000011111100000111111
0000000000000000000000111111000000011111100000011111100000111111
0000000000000000000000111111100000001111110000011111100000111111
0000000000000000000000011111100000001111110000011111100000111111
0000000000000100000000011111110000001111110000011111100000111111
0000000000001110000000001111110000001111110000011111100000111111
0000000000011110000000001111111000001111110000011111100000111111
0000000001111111000000000111111000000111111000011111100000111111
0000000000111111100000000111111100000111111000011111100000111111
0000000000111111110000000011111100000111111000011111100000111111
0000000000011111111000000011111100000111111000011111100000111111
0000000000001111111100000001111110000011111000011111100000111111
0000000000000111111100000001111110000011111100011111100000111111
0000000000000011111110000000111111000011111100011111100000111111
0001000000000001111111000000111111000011111100011111100000111111
0011110000000001111111100000111111100011111100011111100000111111
0111111000000000111111110000011111100001111100011111100000111111
0111111110000000011111111000011111110001111110011111100000111111
1111111111000000001111111000001111110001111110011111100000111111
0011111111100000000111111100001111111001111110011111100000111111
0001111111111000000011111110000111111001111110011111100000111111
0000111111111100000011111111000111111100111100000000000000111111
0000001111111110000001111111100011111100000000000000000000111111
0000000111111111100000111111110011111000000000000000000000111111
0000000011111111110000011111110001100000000000000000000000111111
0000000000111111111000001111111000000000000000000000000000111111
0000000000011111111110000111111000000000000000000000000000111111
0000000000001111111111000111110000000000011111111111111111111111
0000000000000011111111100011100000000000011111111111111111111111
0000000000000001111111111001000000000000011111111111111111111111
0000000000000000111111111100000000000000011111111111111111111111
0000000000000000001111111100000000000000011111111111111111111111
0000000000000000000111111000000000000000011111111111111111111111
0000000000000000000011110000000000000000000000000000000000000000
0000000000000000000000100000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
Run Code Online (Sandbox Code Playgroud)
正如我们所希望的那样,这很好地翻转了。
这实际上并不是您所要求的,因为您要求的是该代码的非破坏性版本。您可以通过将 32x32 块的第一次交换从 变为 来获得此x结果y。例如,您可能会执行以下操作:
void
non_destructive_transpose64(uint64_t x[64], uint64_t y[64]) {
int j, k;
uint64_t m, t;
for (k = 0; k < 64; k += 2) {
((uint32_t *) y)[k] = ((uint32_t *) x)[k ^ 64 + 1];
((uint32_t *) y)[k + 1] = ((uint32_t *) x)[k + 1];
}
for (; k < 128; k += 2) {
((uint32_t *) y)[k] = ((uint32_t *) x)[k];
((uint32_t *) y)[k + 1] = ((uint32_t *) x)[k ^ 64];
}
for (j = 16, m = 0x0000FFFF0000FFFF; j; j >>= 1, m ^= m << j) {
for (k = 0; k < 64; k = ((k | j) + 1) & ~j) {
t = (y[k] ^ (y[k | j] >> j)) & m;
y[k] ^= t;
y[k | j] ^= (t << j);
}
}
}
Run Code Online (Sandbox Code Playgroud)
与其他版本的代码不同,无论架构的字节顺序如何,这都不起作用。另外,我知道 C 标准不允许您将 数组uint64_t作为 数组进行访问uint32_t。然而,我喜欢这样,当你这样做时,移动块循环的第一次迭代不需要移位或异或。