Sau*_*dav 8 python protocol-buffers tensorflow
保存模型有什么区别
例如:
from tensorflow.contrib.session_bundle import exporter
#from tensorflow_serving.session_bundle import exporter
saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
model_exporter.init(
sess.graph.as_graph_def(),
named_graph_signatures={
'inputs': exporter.generic_signature({'images': x}),
'outputs': exporter.generic_signature({'scores': y})})
model_exporter.export(export_path, tf.constant(FLAGS.export_version), sess)
Run Code Online (Sandbox Code Playgroud)
例如:
with sess.graph.as_default():
saver = tf.train.Saver()
saver.save(sess, path, meta_graph_suffix='meta', write_meta_graph=True)
Run Code Online (Sandbox Code Playgroud)
鉴于 Exporter 现已正式弃用,保存图形和数据的新协议是使用 Saver。这是一个带有示例代码的优秀博客: https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc。
| 归档时间: |
|
| 查看次数: |
2941 次 |
| 最近记录: |