Pow*_*ers 38 sql scala join apache-spark apache-spark-sql
我想在Apache Spark连接中包含空值.Spark默认情况下不包含null的行.
这是默认的Spark行为.
val numbersDf = Seq(
("123"),
("456"),
(null),
("")
).toDF("numbers")
val lettersDf = Seq(
("123", "abc"),
("456", "def"),
(null, "zzz"),
("", "hhh")
).toDF("numbers", "letters")
val joinedDf = numbersDf.join(lettersDf, Seq("numbers"))
Run Code Online (Sandbox Code Playgroud)
这是输出joinedDf.show():
+-------+-------+
|numbers|letters|
+-------+-------+
| 123| abc|
| 456| def|
| | hhh|
+-------+-------+
Run Code Online (Sandbox Code Playgroud)
这是我想要的输出:
+-------+-------+
|numbers|letters|
+-------+-------+
| 123| abc|
| 456| def|
| | hhh|
| null| zzz|
+-------+-------+
Run Code Online (Sandbox Code Playgroud)
use*_*411 55
Spark提供了一个特殊的NULL安全等于运算符
numbersDf
.join(lettersDf, numbersDf("numbers") <=> lettersDf("numbers"))
.drop(lettersDf("numbers"))
Run Code Online (Sandbox Code Playgroud)
+-------+-------+
|numbers|letters|
+-------+-------+
| 123| abc|
| 456| def|
| null| zzz|
| | hhh|
+-------+-------+
Run Code Online (Sandbox Code Playgroud)
小心不要在Spark 1.5或更早版本中使用它.在Spark 1.6之前,它需要一个笛卡尔积(SPARK-11111 - 快速零安全连接).
在Spark 2.3.0或更高版本中,您可以Column.eqNullSafe在PySpark中使用:
numbers_df = sc.parallelize([
("123", ), ("456", ), (None, ), ("", )
]).toDF(["numbers"])
letters_df = sc.parallelize([
("123", "abc"), ("456", "def"), (None, "zzz"), ("", "hhh")
]).toDF(["numbers", "letters"])
numbers_df.join(letters_df, numbers_df.numbers.eqNullSafe(letters_df.numbers))
Run Code Online (Sandbox Code Playgroud)
+-------+-------+-------+
|numbers|numbers|letters|
+-------+-------+-------+
| 456| 456| def|
| null| null| zzz|
| | | hhh|
| 123| 123| abc|
+-------+-------+-------+
Run Code Online (Sandbox Code Playgroud)
并%<=>%在SparkR中:
numbers_df <- createDataFrame(data.frame(numbers = c("123", "456", NA, "")))
letters_df <- createDataFrame(data.frame(
numbers = c("123", "456", NA, ""),
letters = c("abc", "def", "zzz", "hhh")
))
head(join(numbers_df, letters_df, numbers_df$numbers %<=>% letters_df$numbers))
Run Code Online (Sandbox Code Playgroud)
numbers numbers letters
1 456 456 def
2 <NA> <NA> zzz
3 hhh
4 123 123 abc
Run Code Online (Sandbox Code Playgroud)
使用SQL(Spark 2.2.0+),您可以使用IS NOT DISTINCT FROM:
SELECT * FROM numbers JOIN letters
ON numbers.numbers IS NOT DISTINCT FROM letters.numbers
Run Code Online (Sandbox Code Playgroud)
这也可以与DataFrameAPI 一起使用:
numbersDf.alias("numbers")
.join(lettersDf.alias("letters"))
.where("numbers.numbers IS NOT DISTINCT FROM letters.numbers")
Run Code Online (Sandbox Code Playgroud)
小智 8
val numbers2 = numbersDf.withColumnRenamed("numbers","num1") //rename columns so that we can disambiguate them in the join
val letters2 = lettersDf.withColumnRenamed("numbers","num2")
val joinedDf = numbers2.join(letters2, $"num1" === $"num2" || ($"num1".isNull && $"num2".isNull) ,"outer")
joinedDf.select("num1","letters").withColumnRenamed("num1","numbers").show //rename the columns back to the original names
Run Code Online (Sandbox Code Playgroud)
根据KL的想法,您可以使用foldLeft生成连接列表达式:
def nullSafeJoin(rightDF: DataFrame, columns: Seq[String], joinType: String)(leftDF: DataFrame): DataFrame =
{
val colExpr: Column = leftDF(columns.head) <=> rightDF(columns.head)
val fullExpr = columns.tail.foldLeft(colExpr) {
(colExpr, p) => colExpr && leftDF(p) <=> rightDF(p)
}
leftDF.join(rightDF, fullExpr, joinType)
}
Run Code Online (Sandbox Code Playgroud)
然后,你可以像这样调用这个函数:
aDF.transform(nullSafejoin(bDF, columns, joinType))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
17194 次 |
| 最近记录: |