Goi*_*Way 115 python deep-learning keras tensorflow
我已经使用CNN训练了二进制分类模型,这是我的代码
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2)) # define a binary classification problem
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=1,
validation_data=(x_test, y_test))
Run Code Online (Sandbox Code Playgroud)
在这里,我想像TensorFlow一样获得每一层的输出,我该怎么做?
ind*_*you 147
您可以使用以下方法轻松获取任何图层的输出: model.layers[index].output
对于所有图层使用此:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs] # evaluation functions
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print layer_outs
Run Code Online (Sandbox Code Playgroud)
注意:为了模拟差使用learning_phase如1.在layer_outs以其它方式使用0.
编辑:(根据评论)
K.function 创建theano/tensorflow张量函数,稍后用于从给定输入的符号图获得输出.
现在K.learning_phase()需要作为输入,因为Dropout/Batchnomalization等许多Keras层依赖于它来改变训练和测试时间的行为.
因此,如果您删除代码中的dropout图层,则只需使用:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp], [out]) for out in outputs] # evaluation functions
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test]) for func in functors]
print layer_outs
Run Code Online (Sandbox Code Playgroud)
编辑2:更优化
我刚刚意识到前面的答案不是针对每个功能评估而优化的,数据将被转移到CPU-> GPU内存,并且还需要对下层n-over进行张量计算.
相反,这是一个更好的方法,因为您不需要多个函数,但只有一个函数可以为您提供所有输出的列表:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functor = K.function([inp, K.learning_phase()], outputs ) # evaluation function
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs
Run Code Online (Sandbox Code Playgroud)
blu*_*sky 102
来自https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate-layer
一种简单的方法是创建一个新模型,输出您感兴趣的图层:
from keras.models import Model
model = ... # include here your original model
layer_name = 'my_layer'
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
Run Code Online (Sandbox Code Playgroud)
或者,您可以构建一个Keras函数,该函数将在给定特定输入的情况下返回某个图层的输出,例如:
from keras import backend as K
# with a Sequential model
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
Run Code Online (Sandbox Code Playgroud)
Phi*_*emy 12
基于此线程的所有良好答案,我编写了一个库来获取每一层的输出。它抽象了所有复杂性,并被设计为尽可能易于使用:
https://github.com/philipperemy/keract
它处理几乎所有边缘情况
希望能帮助到你!
小智 9
以前的解决方案对我不起作用。我按照如下所示处理了这个问题。
layer_outputs = []
for i in range(1, len(model.layers)):
tmp_model = Model(model.layers[0].input, model.layers[i].output)
tmp_output = tmp_model.predict(img)[0]
layer_outputs.append(tmp_output)
Run Code Online (Sandbox Code Playgroud)
这个答案基于:https : //stackoverflow.com/a/59557567/2585501
要打印单层的输出:
from tensorflow.keras import backend as K
layerIndex = 1
func = K.function([model.get_layer(index=0).input], model.get_layer(index=layerIndex).output)
layerOutput = func([input_data]) # input_data is a numpy array
print(layerOutput)
Run Code Online (Sandbox Code Playgroud)
打印每一层的输出:
from tensorflow.keras import backend as K
for layerIndex, layer in enumerate(model.layers):
func = K.function([model.get_layer(index=0).input], layer.output)
layerOutput = func([input_data]) # input_data is a numpy array
print(layerOutput)
Run Code Online (Sandbox Code Playgroud)
我为自己写了这个函数(在Jupyter中),它的灵感来自于indraforyou的回答.它将自动绘制所有图层输出.您的图像必须具有(x,y,1)形状,其中1代表1个通道.你只需要调用plot_layer_outputs(...)来绘图.
%matplotlib inline
import matplotlib.pyplot as plt
from keras import backend as K
def get_layer_outputs():
test_image = YOUR IMAGE GOES HERE!!!
outputs = [layer.output for layer in model.layers] # all layer outputs
comp_graph = [K.function([model.input]+ [K.learning_phase()], [output]) for output in outputs] # evaluation functions
# Testing
layer_outputs_list = [op([test_image, 1.]) for op in comp_graph]
layer_outputs = []
for layer_output in layer_outputs_list:
print(layer_output[0][0].shape, end='\n-------------------\n')
layer_outputs.append(layer_output[0][0])
return layer_outputs
def plot_layer_outputs(layer_number):
layer_outputs = get_layer_outputs()
x_max = layer_outputs[layer_number].shape[0]
y_max = layer_outputs[layer_number].shape[1]
n = layer_outputs[layer_number].shape[2]
L = []
for i in range(n):
L.append(np.zeros((x_max, y_max)))
for i in range(n):
for x in range(x_max):
for y in range(y_max):
L[i][x][y] = layer_outputs[layer_number][x][y][i]
for img in L:
plt.figure()
plt.imshow(img, interpolation='nearest')
Run Code Online (Sandbox Code Playgroud)
来自:https : //github.com/philipperemy/keras-visualize-activations/blob/master/read_activations.py
import keras.backend as K
def get_activations(model, model_inputs, print_shape_only=False, layer_name=None):
print('----- activations -----')
activations = []
inp = model.input
model_multi_inputs_cond = True
if not isinstance(inp, list):
# only one input! let's wrap it in a list.
inp = [inp]
model_multi_inputs_cond = False
outputs = [layer.output for layer in model.layers if
layer.name == layer_name or layer_name is None] # all layer outputs
funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs] # evaluation functions
if model_multi_inputs_cond:
list_inputs = []
list_inputs.extend(model_inputs)
list_inputs.append(0.)
else:
list_inputs = [model_inputs, 0.]
# Learning phase. 0 = Test mode (no dropout or batch normalization)
# layer_outputs = [func([model_inputs, 0.])[0] for func in funcs]
layer_outputs = [func(list_inputs)[0] for func in funcs]
for layer_activations in layer_outputs:
activations.append(layer_activations)
if print_shape_only:
print(layer_activations.shape)
else:
print(layer_activations)
return activations
Run Code Online (Sandbox Code Playgroud)
以下对我来说看起来很简单:
model.layers[idx].output
Run Code Online (Sandbox Code Playgroud)
上面是张量对象,因此您可以使用可应用于张量对象的操作对其进行修改。
例如,获得形状 model.layers[idx].output.get_shape()
idx 是图层的索引,您可以从中找到它 model.summary()
想将此作为评论(但没有足够高的代表。)添加到@indraforyou 的答案中,以纠正 @mathtick 评论中提到的问题。为了避免InvalidArgumentError: input_X:Y is both fed and fetched.异常,只需更换行outputs = [layer.output for layer in model.layers]有outputs = [layer.output for layer in model.layers][1:],即
适应 indraforyou 的最小工作示例:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers][1:] # all layer outputs except first (input) layer
functor = K.function([inp, K.learning_phase()], outputs ) # evaluation function
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs
Run Code Online (Sandbox Code Playgroud)
ps 我尝试尝试诸如此类的事情outputs = [layer.output for layer in model.layers[1:]]没有奏效。
| 归档时间: |
|
| 查看次数: |
123530 次 |
| 最近记录: |