Nat*_*mos 3 data-analysis python-3.x pandas
我正在solver使用一组实例比较一组八个算法(列),每个实例对每个算法执行一次,参数级别D从1到10执行.因此,结果数据框将如下所示:
instance D z solver
0 1000_ep0.0075 1 994 threatened
1 1000_ep0.0075 1 993 desc
2 1000_ep0.0075 1 994 degree
3 1000_ep0.0075 1 993 threatened_desc
4 1000_ep0.0075 1 993 threatened_degree
5 1000_ep0.0075 1 994 desc_later
6 1000_ep0.0075 1 994 degree_later
7 1000_ep0.0075 1 993 dyn_degree
8 1000_ep0.0075 2 986 threatened
9 1000_ep0.0075 2 987 desc
10 1000_ep0.0075 2 988 degree
11 1000_ep0.0075 2 987 threatened_desc
12 1000_ep0.0075 2 986 threatened_degree
13 1000_ep0.0075 2 987 desc_later
14 1000_ep0.0075 2 988 degree_later
15 1000_ep0.0075 2 987 dyn_degree
....
Run Code Online (Sandbox Code Playgroud)
凡z列对应于由算法找到的值(越小越好).
我想在数据帧中添加一列,根据z每个组合的值对应每个算法的等级<instance, D>.对于上面的例子,将是这样的:
instance D z solver z_rank
0 1000_ep0.0075 1 994 threatened 2
1 1000_ep0.0075 1 993 desc 1
2 1000_ep0.0075 1 994 degree 2
3 1000_ep0.0075 1 993 threatened_desc 1
4 1000_ep0.0075 1 993 threatened_degree 1
5 1000_ep0.0075 1 994 desc_later 2
6 1000_ep0.0075 1 994 degree_later 2
7 1000_ep0.0075 1 993 dyn_degree 1
8 1000_ep0.0075 2 986 threatened 1
9 1000_ep0.0075 2 987 desc 2
10 1000_ep0.0075 2 988 degree 3
11 1000_ep0.0075 2 987 threatened_desc 2
12 1000_ep0.0075 2 986 threatened_degree 1
13 1000_ep0.0075 2 987 desc_later 2
14 1000_ep0.0075 2 988 degree_later 3
15 1000_ep0.0075 2 987 dyn_degree 2
...
Run Code Online (Sandbox Code Playgroud)
使用python-pandas,这是我到目前为止所能得到的:
df.loc[:, 'z_rank'] = df_rg.groupby(['instance', 'D'])['z'].rank()
df.head(16)
instance D z solver z_rank
0 1000_ep0.0075 1 994 threatened 47.5
1 1000_ep0.0075 1 993 desc 16.5
2 1000_ep0.0075 1 994 degree 47.5
3 1000_ep0.0075 1 993 threatened_desc 16.5
4 1000_ep0.0075 1 993 threatened_degree 16.5
5 1000_ep0.0075 1 994 desc_later 47.5
6 1000_ep0.0075 1 994 degree_later 47.5
7 1000_ep0.0075 1 993 dyn_degree 16.5
8 1000_ep0.0075 2 986 threatened 7.0
9 1000_ep0.0075 2 987 desc 18.5
10 1000_ep0.0075 2 988 degree 44.5
11 1000_ep0.0075 2 987 threatened_desc 18.5
12 1000_ep0.0075 2 986 threatened_degree 7.0
13 1000_ep0.0075 2 987 desc_later 18.5
14 1000_ep0.0075 2 988 degree_later 44.5
15 1000_ep0.0075 2 987 dyn_degree 18.5
Run Code Online (Sandbox Code Playgroud)
这显然不是我想要的.
有人可以帮我吗?
您需要method=dense在SeriesGroupBy.rank()组之间增加1的位置:
df['z_rank'] = df.groupby(['instance', 'D'])['z'].rank(method='dense').astype(int)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3174 次 |
| 最近记录: |