我有一个有4列(A,B,C,D)的数据帧.D有一些NaN条目.我想用具有相同值A,B,C的D的平均值填充NaN值.
例如,如果A,B,C,D的值分别是x,y,z和Nan,那么我希望将NaN值替换为A的平均值,其中A,B,C的值为分别是x,y,z.
Zer*_*ero 13
df['D'].fillna(df.groupby(['A','B','C'])['D'].transform('mean')) 会比 apply
In [2400]: df
Out[2400]:
A B C D
0 1 1 1 1.0
1 1 1 1 NaN
2 1 1 1 3.0
3 3 3 3 5.0
In [2401]: df['D'].fillna(df.groupby(['A','B','C'])['D'].transform('mean'))
Out[2401]:
0 1.0
1 2.0
2 3.0
3 5.0
Name: D, dtype: float64
In [2402]: df['D'] = df['D'].fillna(df.groupby(['A','B','C'])['D'].transform('mean'))
In [2403]: df
Out[2403]:
A B C D
0 1 1 1 1.0
1 1 1 1 2.0
2 1 1 1 3.0
3 3 3 3 5.0
Run Code Online (Sandbox Code Playgroud)
细节
In [2396]: df.shape
Out[2396]: (10000, 4)
In [2398]: %timeit df['D'].fillna(df.groupby(['A','B','C'])['D'].transform('mean'))
100 loops, best of 3: 3.44 ms per loop
In [2397]: %timeit df.groupby(['A','B','C'])['D'].apply(lambda x: x.fillna(x.mean()))
100 loops, best of 3: 5.34 ms per loop
Run Code Online (Sandbox Code Playgroud)
我想你需要:
df.D = df.groupby(['A','B','C'])['D'].apply(lambda x: x.fillna(x.mean()))
Run Code Online (Sandbox Code Playgroud)
样品:
df = pd.DataFrame({'A':[1,1,1,3],
'B':[1,1,1,3],
'C':[1,1,1,3],
'D':[1,np.nan,3,5]})
print (df)
A B C D
0 1 1 1 1.0
1 1 1 1 NaN
2 1 1 1 3.0
3 3 3 3 5.0
df.D = df.groupby(['A','B','C'])['D'].apply(lambda x: x.fillna(x.mean()))
print (df)
A B C D
0 1 1 1 1.0
1 1 1 1 2.0
2 1 1 1 3.0
3 3 3 3 5.0
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8606 次 |
| 最近记录: |