在keras中,我想自定义我的损失函数,它不仅需要(y_true,y_pred)作为输入,还需要使用网络内层的输出作为输出图层的标签.这张图片显示了网络布局
这里,内部输出是xn,它是一维特征向量.在右上角,输出是xn',这是xn的预测.换句话说,xn是xn'的标签.
虽然[Ax,Ay]传统上称为y_true,而[Ax',Ay']是y_pred.
我想将这两个损失组件合二为一,共同培训网络.
任何想法或想法都非常感谢!
ljk*_*ece 12
我找到了一条出路,如果有人正在寻找相同的,我在这里发布(根据这篇文章中给出的网络):
我们的想法是定义自定义损失函数并将其用作网络的输出.(符号:A是可变的正确标签A,并且A'是可变的预测值A)
def customized_loss(args):
#A is from the training data
#S is the internal state
A, A', S, S' = args
#customize your own loss components
loss1 = K.mean(K.square(A - A'), axis=-1)
loss2 = K.mean(K.square(S - S'), axis=-1)
#adjust the weight between loss components
return 0.5 * loss1 + 0.5 * loss2
def model():
#define other inputs
A = Input(...) # define input A
#construct your model
cnn_model = Sequential()
...
# get true internal state
S = cnn_model(prev_layer_output0)
# get predicted internal state output
S' = Dense(...)(prev_layer_output1)
# get predicted A output
A' = Dense(...)(prev_layer_output2)
# customized loss function
loss_out = Lambda(customized_loss, output_shape=(1,), name='joint_loss')([A, A', S, S'])
model = Model(input=[...], output=[loss_out])
return model
def train():
m = model()
opt = 'adam'
model.compile(loss={'joint_loss': lambda y_true, y_pred:y_pred}, optimizer = opt)
# train the model
....
Run Code Online (Sandbox Code Playgroud)
首先,您应该使用功能 API。然后,您应该将网络输出定义为输出加上内部层的结果,将它们合并为单个输出(通过连接),然后创建一个自定义损失函数,将合并的输出分成两部分并进行损失计算在其自己的。
就像是:
def customLoss(y_true, y_pred):
#loss here
internalLayer = Convolution2D()(inputs) #or other layers
internalModel = Model(input=inputs, output=internalLayer)
tmpOut = Dense(...)(internalModel)
mergedOut = merge([tmpOut, mergedOut], mode = "concat", axis = -1)
fullModel = Model(input=inputs, output=mergedOut)
fullModel.compile(loss = customLoss, optimizer = "whatever")
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5835 次 |
| 最近记录: |