srm*_*srm 5 python complex-numbers python-3.x
我正在尝试编写一种方法来生成高斯整数的高斯除数序列 - 高斯整数是正整数或复数g = a + bi,其中a和b都是整数,高斯整数的高斯除数g是高斯整数d这g / d也是高斯整数.
我有以下代码.
def is_gaussian_integer(c):
"""
Checks whether a given real or complex number is a Gaussian integer,
i.e. a complex number g = a + bi such that a and b are integers.
"""
if type(c) == int:
return True
return c.real.is_integer() and c.imag.is_integer()
def gaussian_divisors(g):
"""
Generates a sequence of Gaussian divisors of a rational or Gaussian
integer g, i.e. a Gaussian integer d such that g / d is also a Gaussian integer.
"""
if not is_gaussian_integer(g):
return
if g == 1:
yield complex(g, 0)
return
g = complex(g) if type(g) == int or type(g) == float else g
a = b = 1
ubound = int(math.sqrt(abs(g)))
for a in range(-ubound, ubound + 1):
for b in range(-ubound, ubound + 1):
if a or b:
d = complex(a, b)
if is_gaussian_integer(g / d):
yield d
yield g
Run Code Online (Sandbox Code Playgroud)
它似乎"大部分"起作用,但对于某些输入它缺少一些高斯除数,例如2我希望序列包含除数-2 + 0j(这只是-2),但它缺失了.我无法弄清楚为什么会这样做或者逻辑上存在差距.
In [92]: list(gaussian_divisors(2))
Out[92]: [(-1-1j), (-1+0j), (-1+1j), -1j, 1j, (1-1j), (1+0j), (1+1j), (2+0j)]
Run Code Online (Sandbox Code Playgroud)
而不是仅仅屈服
yield g
Run Code Online (Sandbox Code Playgroud)
你还可以另外
yield -g
Run Code Online (Sandbox Code Playgroud)
因为你的循环在int(math.sqrt(abs(g)))=int(sqrt(2))处开始和停止1,所以它只会测试-1,0和1。
或者,如果您想在循环中包含-2and ,2则需要增加ubound或math.ceil结果sqrt。
| 归档时间: |
|
| 查看次数: |
603 次 |
| 最近记录: |