我试着在tensorflow中定义一个二维占位符,但是,我事先并不知道它的大小.因此我定义了另一个占位符,但它似乎根本不起作用.这是最小的例子:
import tensorflow as tf
batchSize = tf.placeholder(tf.int32)
input = tf.placeholder(tf.int32, [batchSize, 5])
Run Code Online (Sandbox Code Playgroud)
错误信息:
Traceback (most recent call last):
File "C:/Users/v-zhaom/OneDrive/testconv/test_placeholder.py", line 5, in <module>
input = tf.placeholder(tf.int32, [batchSize, 5])
File "C:\Python35\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1579, in placeholder
shape = tensor_shape.as_shape(shape)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 821, in as_shape
return TensorShape(shape)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 457, in __init__
self._dims = [as_dimension(d) for d in dims_iter]
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 457, in <listcomp>
self._dims = [as_dimension(d) for d in dims_iter]
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 378, in as_dimension
return Dimension(value)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 33, in __init__
self._value = int(value)
TypeError: int() argument must be a string, a bytes-like object or a number, not 'Tensor'
Run Code Online (Sandbox Code Playgroud)
然后我试着打包形状,所以我有这个:
input = tf.placeholder(tf.int32, tf.pack([batchSize, 5]))
Run Code Online (Sandbox Code Playgroud)
也不起作用:
Traceback (most recent call last):
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 451, in __init__
dims_iter = iter(dims)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 510, in __iter__
raise TypeError("'Tensor' object is not iterable.")
TypeError: 'Tensor' object is not iterable.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:/Users/v-zhaom/OneDrive/testconv/test_placeholder.py", line 5, in <module>
input = tf.placeholder(tf.int32, tf.pack([batchSize, 5]))
File "C:\Python35\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1579, in placeholder
shape = tensor_shape.as_shape(shape)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 821, in as_shape
return TensorShape(shape)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 454, in __init__
self._dims = [as_dimension(dims)]
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 378, in as_dimension
return Dimension(value)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_shape.py", line 33, in __init__
self._value = int(value)
TypeError: int() argument must be a string, a bytes-like object or a number, not 'Tensor'
Run Code Online (Sandbox Code Playgroud)
None如果您事先不知道某个尺寸的长度,请使用,例如
input = tf.placeholder(tf.int32, [None, 5])
Run Code Online (Sandbox Code Playgroud)
当您为此占位符提供适当的形状数组(batch_size,5)时,它的动态形状将被正确设置,即
sess.run(tf.shape(input), feed_dict={input: np.zeros(dtype=np.int32, shape=(10, 5))})
Run Code Online (Sandbox Code Playgroud)
将返回
array([10, 5], dtype=int32)
Run Code Online (Sandbox Code Playgroud)
正如所料