Bea*_*ker 3 image python-3.x tensorflow
我试图弄清楚如何在 Tensorflow 中截取动态确定的图像。下面是我试图完成的一个例子,但我似乎无法让它工作。本质上,我想在图形中提供图像和该图像的裁剪值,然后继续对这些裁剪的部分进行其他计算。我目前的尝试:
import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
sess = tf.InteractiveSession()
img1 = np.random.random([400, 600, 3])
img2 = np.random.random([400, 600, 3])
img3 = np.random.random([400, 600, 3])
images = [img1, img2, img3]
img1_crop = [100, 100, 100, 100]
img2_crop = [200, 150, 100, 100]
img3_crop = [150, 200, 100, 100]
crop_values = [img1_crop, img2_crop, img3_crop]
def crop_image(img, crop):
tf.image.crop_to_bounding_box(img,
crop[0],
crop[1],
crop[2],
crop[3])
image_placeholder = tf.placeholder("float", [None, 400, 600, 3])
crop_placeholder = tf.placeholder(dtype=tf.int32)
sess.run(tf.global_variables_initializer())
cropped_image = tf.map_fn(lambda img, crop: crop_image(img, crop), elems=[image_placeholder, crop_placeholder])
result = sess.run(cropped_image, feed_dict={image_placeholder: images, crop_placeholder:crop_values})
plt.imshow(result)
plt.show()
Run Code Online (Sandbox Code Playgroud)
/Users/p111/anaconda/bin/python /Users/p111/PycharmProjects/analysis_code/testing.py 回溯(最近一次调用最后一次): 文件“/Users/p111/PycharmProjects/analysis_code/testing.py”,第 31 行,在 cropped_image = tf.map_fn(lambda img,crop:crop_image(img,crop),elems=[image_placeholder,crop_placeholder]) 文件“/Users/p111/anaconda/lib/python3.5/site-packages/tensorflow/python/ops/functional_ops.py”,第390行,在map_fn中 交换内存=交换内存) 文件“/Users/p111/anaconda/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py”,第2636行,在while_loop中 结果 = context.BuildLoop(cond, body, loop_vars, shape_invariants) BuildLoop 中的文件“/Users/p111/anaconda/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py”,第 2469 行 pred、body、original_loop_vars、loop_vars、shape_invariants) 文件“/Users/p111/anaconda/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py”,第2419行,在_BuildLoop body_result = body(*packed_vars_for_body) 文件“/Users/p111/anaconda/lib/python3.5/site-packages/tensorflow/python/ops/functional_ops.py”,第380行,在计算中 packed_fn_values = fn(packed_values) TypeError: () 缺少 1 个必需的位置参数:'crop'
编辑:看来 elems 只会接受一个张量。这意味着我需要以某种方式将我的两个张量合并为一个,然后将其解压缩到我的函数中以获取值。我不确定我将如何执行这种张量操作。我已经找到了瞥见方法并且确实有效,但是我想知道这种特定方法是否可以做到同样的事情。大多数情况下,我想知道您将如何组合然后拆分一对张量,以便可以在此方法中使用它。
我从这里看到了这段代码。
elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
alternate = map_fn(lambda x: x[0] * x[1], elems, dtype=tf.int64)
# alternate == [-1, 2, -3]
Run Code Online (Sandbox Code Playgroud)
可以使用元组或列表将多个元素打包成一个,所以我尝试了这个。
import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
sess = tf.InteractiveSession()
img1 = np.random.random([400, 600, 3])
img2 = np.random.random([400, 600, 3])
img3 = np.random.random([400, 600, 3])
images = np.array([img1, img2, img3])
# images = tf.convert_to_tensor(images) # it can be uncommented.
img1_crop = [100, 100, 100, 100]
img2_crop = [200, 150, 100, 100]
img3_crop = [150, 200, 100, 100]
crop_values = np.array([img1_crop, img2_crop, img3_crop])
# crop_values = tf.convert_to_tensor(crop_values) # it can be uncommented.
def crop_image(img, crop):
return tf.image.crop_to_bounding_box(img,
crop[0],
crop[1],
crop[2],
crop[3])
fn = lambda x: crop_image(x[0], x[1])
elems = (images, crop_values)
cropped_image = tf.map_fn(fn, elems=elems, dtype=tf.float64)
result = sess.run(cropped_image)
print result.shape
plt.imshow(result[0])
plt.show()
Run Code Online (Sandbox Code Playgroud)
它在我的机器上使用 tf 版本 0.11 和 python2。希望这可以帮到你。
归档时间: |
|
查看次数: |
4843 次 |
最近记录: |