Jil*_*Juk 4 dataframe apache-spark apache-spark-sql pyspark pyspark-sql
我对Pyspark很新.我尝试使用以下代码解析JSON文件
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
df = sqlContext.read.json("file:///home/malwarehunter/Downloads/122116-path.json")
df.printSchema()
Run Code Online (Sandbox Code Playgroud)
输出如下.
root | - _corrupt_record:string(nullable = true)
df.show()
Run Code Online (Sandbox Code Playgroud)
输出看起来像这样
+--------------------+
| _corrupt_record|
+--------------------+
| {|
| "time1":"2...|
| "time2":"201...|
| "step":0.5,|
| "xyz":[|
| {|
| "student":"00010...|
| "attr...|
| [ -2.52, ...|
| [ -2.3, -...|
| [ -1.97, ...|
| [ -1.27, ...|
| [ -1.03, ...|
| [ -0.8, -...|
| [ -0.13, ...|
| [ 0.09, -...|
| [ 0.54, -...|
| [ 1.1, -...|
| [ 1.34, 0...|
| [ 1.64, 0...|
+--------------------+
only showing top 20 rows
Run Code Online (Sandbox Code Playgroud)
Json文件看起来像这样.
{
"time1":"2016-12-16T00:00:00.000",
"time2":"2016-12-16T23:59:59.000",
"step":0.5,
"xyz":[
{
"student":"0001025D0007F5DB",
"attr":[
[ -2.52, -1.17 ],
[ -2.3, -1.15 ],
[ -1.97, -1.19 ],
[ 10.16, 4.08 ],
[ 10.23, 4.87 ],
[ 9.96, 5.09 ] ]
},
{
"student":"0001025D0007F5DC",
"attr":[
[ -2.58, -0.99 ],
[ 10.12, 3.89 ],
[ 10.27, 4.59 ],
[ 10.05, 5.02 ] ]
}
]}
Run Code Online (Sandbox Code Playgroud)
你能帮我解析一下并创建这样的数据框吗?
use*_*411 13
Spark> = 2.2:
您可以使用multiLineJSON阅读器的参数:
spark.read.json(path_to_input, multiLine=True)
Run Code Online (Sandbox Code Playgroud)
Spark <2.2
几乎是通用但相当昂贵的解决方案,可用于读取多行JSON文件:
SparkContex.wholeTextFiles.DataFrameReader.json.只要您的数据没有其他问题,它应该可以解决问题:
spark.read.json(sc.wholeTextFiles(path_to_input).values())
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
11826 次 |
| 最近记录: |