Jd *_*aba 1 r html-table rvest
嗨,我想从premierleague网站上提取表格.
我使用的rvest包是 包,我在初始阶段使用的代码如下:
library(rvest)
library(magrittr)
premierleague <- read_html("https://fantasy.premierleague.com/a/entry/767830/history")
premierleague %>% html_nodes("ism-table")
Run Code Online (Sandbox Code Playgroud)
我找不到一个可以解压缩html_nodesfor rvest包的html标签.
我使用类似的方法从" http://admissions.calpoly.edu/prospective/profile.html "中提取数据,我能够提取数据.我用于calpoly的代码如下:
library(rvest)
library(magrittr)
CPadmissions <- read_html("http://admissions.calpoly.edu/prospective/profile.html")
CPadmissions %>% html_nodes("table") %>%
.[[1]] %>%
html_table()
Run Code Online (Sandbox Code Playgroud)
通过以下链接从youtube获取上述代码:https://www.youtube.com/watch?v = gSbuwYdNYLM&ab_channel = EvanO%27Brien
任何有关从fantasy.premierleague.com获取数据的帮助都非常感谢.我需要使用某种API吗?
由于数据是用JavaScript加载的,因此使用rvest获取HTML将无法满足您的需求,但如果您使用PhantomJS作为RSelenium中的无头浏览器,那么它并不是那么复杂(通过RSelenium标准):
library(RSelenium)
library(rvest)
# initialize browser and driver with RSelenium
ptm <- phantom()
rd <- remoteDriver(browserName = 'phantomjs')
rd$open()
# grab source for page
rd$navigate('https://fantasy.premierleague.com/a/entry/767830/history')
html <- rd$getPageSource()[[1]]
# clean up
rd$close()
ptm$stop()
# parse with rvest
df <- html %>% read_html() %>%
html_node('#ismr-event-history table.ism-table') %>%
html_table() %>%
setNames(gsub('\\S+\\s+(\\S+)', '\\1', names(.))) %>% # clean column names
setNames(gsub('\\s', '_', names(.)))
str(df)
## 'data.frame': 20 obs. of 10 variables:
## $ Gameweek : chr "GW1" "GW2" "GW3" "GW4" ...
## $ Gameweek_Points : int 34 47 53 51 66 66 65 63 48 90 ...
## $ Points_Bench : int 1 6 9 7 14 2 9 3 8 2 ...
## $ Gameweek_Rank : chr "2,406,373" "2,659,789" "541,258" "905,524" ...
## $ Transfers_Made : int 0 0 2 0 3 2 2 0 2 0 ...
## $ Transfers_Cost : int 0 0 0 0 4 4 4 0 0 0 ...
## $ Overall_Points : chr "34" "81" "134" "185" ...
## $ Overall_Rank : chr "2,406,373" "2,448,674" "1,914,025" "1,461,665" ...
## $ Value : chr "£100.0" "£100.0" "£99.9" "£100.0" ...
## $ Change_Previous_Gameweek: logi NA NA NA NA NA NA ...
Run Code Online (Sandbox Code Playgroud)
和往常一样,需要更多的清洁,但总的来说,没有太多的工作,它的状态非常好.(如果你正在使用tidyverse,那df %>% mutate_if(is.character, parse_number)就会很好.)箭头是图像,这就是为什么最后一列是全部NA,但你仍然可以计算它们.