Jai*_*ani 5 numpy machine-learning nearest-neighbor python-3.x scikit-learn
我正在尝试对我在 UCI 机器学习数据库中找到的一些文本识别数据进行 ak 最近邻预测。( https://archive.ics.uci.edu/ml/datasets/Letter+Recognition )
我交叉验证了数据并测试了准确性,没有问题,但我无法运行classifier.predict()。任何人都可以阐明为什么我会收到此错误?我在 sklearn 网站上阅读了维度诅咒,但实际上我在修复代码时遇到了麻烦。
到目前为止,我的代码如下:
import pandas as pd
import numpy as np
from sklearn import preprocessing, cross_validation, neighbors
df = pd.read_csv('KMeans_letter_recog.csv')
X = np.array(df.drop(['Letter'], 1))
y = np.array(df['Letter'])
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.2) #20% data used
clf = neighbors.KNeighborsClassifier()
clf.fit(X_train, y_train)
accuracy = clf.score(X_test, y_test) #test
print(accuracy) #this works fine
example = np.array([7,4,3,2,4,5,3,6,7,4,2,3,5,6,8,4])
example = X.reshape(len(example), -1)
prediction = clf.predict(example)
print(prediction) #error
Run Code Online (Sandbox Code Playgroud)
df.head() 产生:
Letter x-box y-box box_width box_height on_pix x-bar_mean \
0 T 2 8 3 5 1 8
1 I 5 12 3 7 2 10
2 D 4 11 6 8 6 10
3 N 7 11 6 6 3 5
4 G 2 1 3 1 1 8
y-bar_mean x2bar_mean y2bar_mean xybar_mean x2y_mean xy2_mean \
0 13 0 6 6 10 8
1 5 5 4 13 3 9
2 6 2 6 10 3 7
3 9 4 6 4 4 10
4 6 6 6 6 5 9
x-ege xegvy y-ege yegvx
0 0 8 0 8
1 2 8 4 10
2 3 7 3 9
3 6 10 2 8
4 1 7 5 10
Run Code Online (Sandbox Code Playgroud)
我的错误提要如下:
Traceback (most recent call last):
File "C:\Users\jai_j\Desktop\Python Projects\K Means ML.py", line 31, in <module>
prediction = clf.predict(example)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\classification.py", line 145, in predict
neigh_dist, neigh_ind = self.kneighbors(X)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\neighbors\base.py", line 381, in kneighbors
for s in gen_even_slices(X.shape[0], n_jobs)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 758, in __call__
while self.dispatch_one_batch(iterator):
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 608, in dispatch_one_batch
self._dispatch(tasks)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 571, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 109, in apply_async
result = ImmediateResult(func)
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py", line 326, in __init__
self.results = batch()
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "C:\Users\jai_j\Desktop\Python Projects\WinPython-64bit-3.5.2.3Qt5\python-3.5.2.amd64\lib\site-packages\sklearn\externals\joblib\parallel.py", line 131, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "sklearn\neighbors\binary_tree.pxi", line 1294, in sklearn.neighbors.kd_tree.BinaryTree.query (sklearn\neighbors\kd_tree.c:11325)
ValueError: query data dimension must match training data dimension
Run Code Online (Sandbox Code Playgroud)
预先感谢您的任何帮助,同时我会继续寻找答案
你的问题是你没有重塑example
,并且你正在重塑到不正确的尺寸。您正在将X
数组重塑为(16, N)
,其中N
是 中的观测值数量X
。
因此,当您尝试对 进行预测时example
,您最终会使用分类器对X
重塑后的N
列进行预测,而不是像您训练的那样具有 16 列。
看来您想对单个示例进行预测,因此您应该重塑它而不是X
. 据推测,您想要example = example.reshape(1, -1)
而不是example = X.reshape(len(example), -1)
.
最初,您example
使用 shape进行创建(16,)
。您应该将其重塑为(1, 16)
,使用(1, -1)
为 尺寸。这将产生一个形状为(1, 16)
适合您的分类器的数组。
为了清楚起见,请尝试将代码更改为:
example = np.array([7,4,3,2,4,5,3,6,7,4,2,3,5,6,8,4])
example = example.reshape(1, -1)
prediction = clf.predict(example)
print(prediction) # shouldn't error anymore
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
26302 次 |
最近记录: |