将dataframe中的字符串数据转换为double

Hat*_*her 3 scala apache-spark apache-spark-sql

我有一个包含double类型的csv文件.当我加载到数据帧时,我收到此消息告诉我类型字符串是java.lang.String不能转换为java.lang.Double虽然我的数据是数字.我怎么得到这个csv文件的数据帧包含double type.how我应该修改我的代码.

import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{ArrayType, DoubleType}
import org.apache.spark.sql.functions.split
import scala.collection.mutable._

object Example extends App {

val spark = SparkSession.builder.master("local").appName("my-spark-app").getOrCreate()
val data=spark.read.csv("C://lpsa.data").toDF("col1","col2","col3","col4","col5","col6","col7","col8","col9")
val data2=data.select("col2","col3","col4","col5","col6","col7")
Run Code Online (Sandbox Code Playgroud)

我可以做什么来将数据帧中的每一行转换为double类型?谢谢

use*_*411 6

使用selectcast:

import org.apache.spark.sql.functions.col

data.select(Seq("col2", "col3", "col4", "col5", "col6", "col7").map(
  c => col(c).cast("double")
): _*)
Run Code Online (Sandbox Code Playgroud)

或者将架构传递给读者:

  • 定义架构:

    import org.apache.spark.sql.types._
    
    val cols = Seq(
      "col1", "col2", "col3", "col4", "col5", "col6", "col7", "col8", "col9"
    )
    
    val doubleCols = Set("col2", "col3", "col4", "col5", "col6", "col7")
    
    val schema =  StructType(cols.map(
      c => StructField(c, if (doubleCols contains c) DoubleType else StringType)
    ))
    
    Run Code Online (Sandbox Code Playgroud)
  • 并将其用作schema方法的参数

    spark.read.schema(schema).csv(path)
    
    Run Code Online (Sandbox Code Playgroud)

也可以使用模式推断:

spark.read.option("inferSchema", "true").csv(path)
Run Code Online (Sandbox Code Playgroud)

但它要贵得多.