AttributeError:模块'tensorflow.contrib.learn'没有属性'TensorFlowDNNClassifier'

sid*_*yam 8 python machine-learning scikit-learn tensorflow

这是我试图执行的ml tensorflow代码 -

import tensorflow.contrib.learn as skflow
from sklearn import datasets, metrics
iris = datasets.load_iris()
classifier = skflow.TensorFlowDNNClassifier(hidden_units=[10, 20, 10], n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(iris.target, classifier.predict(iris.data))

print("Accuracy: %f" % score)
Run Code Online (Sandbox Code Playgroud)

它给出以下错误 -

Traceback(最近一次调用最后一次):

文件"C:\ Users\admin\test3.py",第5行,in

classifier = skflow.TensorFlowDNNClassifier(hidden_​​units = [10,20,10],n_classes = 3)AttributeError:模块'tensorflow.contrib.learn'没有属性'TensorFlowDNNClassifier'

[完成69.3s,退出代码1]

[shell_cmd:python -u"C:\ Users\admin\test3.py"]

mar*_*ars 6

TensorFlow项目中似乎有一个主要的重构,并且所有skflow代码都已在主tensorflow存储库下移动.

尝试TensorFlowDNNClassifier用just 替换DNNClassifier.新课程可以在这里找到.您的更正后的代码看起来像,

import tensorflow.contrib.learn as skflow
from sklearn import datasets, metrics
iris = datasets.load_iris()
# made a change in the next line
classifier = skflow.DNNClassifier(hidden_units=[10, 20, 10], n_classes=3)
classifier.fit(iris.data, iris.target)
score = metrics.accuracy_score(iris.target, classifier.predict(iris.data))

print("Accuracy: %f" % score)
Run Code Online (Sandbox Code Playgroud)