用于计算pandas dataframe列中列表长度的Pythonic方法

MYG*_*YGz 34 python python-2.7 pandas

我有这样的数据帧:

                                                    CreationDate
2013-12-22 15:25:02                  [ubuntu, mac-osx, syslinux]
2009-12-14 14:29:32  [ubuntu, mod-rewrite, laconica, apache-2.2]
2013-12-22 15:42:00               [ubuntu, nat, squid, mikrotik]
Run Code Online (Sandbox Code Playgroud)

我是CreationDate列中列表的计算长度,并创建一个新Length列,如下所示:

df['Length'] = df.CreationDate.apply(lambda x: len(x))
Run Code Online (Sandbox Code Playgroud)

这给了我这个:

                                                    CreationDate  Length
2013-12-22 15:25:02                  [ubuntu, mac-osx, syslinux]       3
2009-12-14 14:29:32  [ubuntu, mod-rewrite, laconica, apache-2.2]       4
2013-12-22 15:42:00               [ubuntu, nat, squid, mikrotik]       4
Run Code Online (Sandbox Code Playgroud)

是否有更多的pythonic方式来做到这一点?

ayh*_*han 50

您也可以使用str访问器进行一些列表操作.在这个例子中,

df['CreationDate'].str.len()
Run Code Online (Sandbox Code Playgroud)

返回每个列表的长度.请参阅文档str.len.

df['Length'] = df['CreationDate'].str.len()
df
Out: 
                                                    CreationDate  Length
2013-12-22 15:25:02                  [ubuntu, mac-osx, syslinux]       3
2009-12-14 14:29:32  [ubuntu, mod-rewrite, laconica, apache-2.2]       4
2013-12-22 15:42:00               [ubuntu, nat, squid, mikrotik]       4
Run Code Online (Sandbox Code Playgroud)

对于这些操作,vanilla Python通常更快.熊猫虽然处理NaNs.这是时间:

ser = pd.Series([random.sample(string.ascii_letters, 
                               random.randint(1, 20)) for _ in range(10**6)])

%timeit ser.apply(lambda x: len(x))
1 loop, best of 3: 425 ms per loop

%timeit ser.str.len()
1 loop, best of 3: 248 ms per loop

%timeit [len(x) for x in ser]
10 loops, best of 3: 84 ms per loop

%timeit pd.Series([len(x) for x in ser], index=ser.index)
1 loop, best of 3: 236 ms per loop
Run Code Online (Sandbox Code Playgroud)

  • 到底有什么用呢?将其独立于实际类型而命名为“ str”的任何原因是什么? (2认同)

Tre*_*ney 8

import pandas as pd

data = {'os': [['ubuntu', 'mac-osx', 'syslinux'], ['ubuntu', 'mod-rewrite', 'laconica', 'apache-2.2'], ['ubuntu', 'nat', 'squid', 'mikrotik']]}
index = ['2013-12-22 15:25:02', '2009-12-14 14:29:32', '2013-12-22 15:42:00']

df = pd.DataFrame(data, index)

# create Length column
df['Length'] = df.os.map(len)

# display(df)
                                                              os  Length
2013-12-22 15:25:02                  [ubuntu, mac-osx, syslinux]       3
2009-12-14 14:29:32  [ubuntu, mod-rewrite, laconica, apache-2.2]       4
2013-12-22 15:42:00               [ubuntu, nat, squid, mikrotik]       4
Run Code Online (Sandbox Code Playgroud)

%timeit

import pandas as pd
import random
import string

random.seed(365)

ser = pd.Series([random.sample(string.ascii_letters, random.randint(1, 20)) for _ in range(10**6)])

%timeit ser.str.len()
252 ms ± 12.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit ser.map(len)
220 ms ± 7.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit ser.apply(len)
222 ms ± 8.31 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)