Yts*_*oer 15 partitioning window-functions apache-spark apache-spark-sql pyspark
我的问题是由计算spark数据帧中连续行之间差异的用例触发的.
例如,我有:
>>> df.show()
+-----+----------+
|index| col1|
+-----+----------+
| 0.0|0.58734024|
| 1.0|0.67304325|
| 2.0|0.85154736|
| 3.0| 0.5449719|
+-----+----------+
Run Code Online (Sandbox Code Playgroud)
如果我选择使用"Window"函数计算它们,那么我可以这样做:
>>> winSpec = Window.partitionBy(df.index >= 0).orderBy(df.index.asc())
>>> import pyspark.sql.functions as f
>>> df.withColumn('diffs_col1', f.lag(df.col1, -1).over(winSpec) - df.col1).show()
+-----+----------+-----------+
|index| col1| diffs_col1|
+-----+----------+-----------+
| 0.0|0.58734024|0.085703015|
| 1.0|0.67304325| 0.17850411|
| 2.0|0.85154736|-0.30657548|
| 3.0| 0.5449719| null|
+-----+----------+-----------+
Run Code Online (Sandbox Code Playgroud)
问题:我在一个分区中明确地划分了数据帧.这会对性能产生什么影响,如果存在,为什么会这样,我怎么能避免它呢?因为当我没有指定分区时,我收到以下警告:
16/12/24 13:52:27 WARN WindowExec: No Partition Defined for Window operation! Moving all data to a single partition, this can cause serious performance degradation.
Run Code Online (Sandbox Code Playgroud)
use*_*411 16
在实践中,性能影响几乎与您完全忽略partitionBy
条款相同.所有记录将被洗牌到一个分区,在本地排序并逐个迭代迭代.
差异仅在于总共创建的分区数.让我们举例说明使用包含10个分区和1000个记录的简单数据集的示例:
df = spark.range(0, 1000, 1, 10).toDF("index").withColumn("col1", f.randn(42))
Run Code Online (Sandbox Code Playgroud)
如果您定义没有partition by子句的框架
w_unpart = Window.orderBy(f.col("index").asc())
Run Code Online (Sandbox Code Playgroud)
并使用它 lag
df_lag_unpart = df.withColumn(
"diffs_col1", f.lag("col1", 1).over(w_unpart) - f.col("col1")
)
Run Code Online (Sandbox Code Playgroud)
总共只有一个分区:
df_lag_unpart.rdd.glom().map(len).collect()
Run Code Online (Sandbox Code Playgroud)
[1000]
Run Code Online (Sandbox Code Playgroud)
与具有虚拟索引的帧定义相比(与您的代码相比简化了一点:
w_part = Window.partitionBy(f.lit(0)).orderBy(f.col("index").asc())
Run Code Online (Sandbox Code Playgroud)
将使用等于的分区数spark.sql.shuffle.partitions
:
spark.conf.set("spark.sql.shuffle.partitions", 11)
df_lag_part = df.withColumn(
"diffs_col1", f.lag("col1", 1).over(w_part) - f.col("col1")
)
df_lag_part.rdd.glom().count()
Run Code Online (Sandbox Code Playgroud)
11
Run Code Online (Sandbox Code Playgroud)
只有一个非空分区:
df_lag_part.rdd.glom().filter(lambda x: x).count()
Run Code Online (Sandbox Code Playgroud)
1
Run Code Online (Sandbox Code Playgroud)
遗憾的是,没有通用的解决方案可以用来解决PySpark中的这个问题.这只是实现的固有机制与分布式处理模型相结合.
由于index
列是顺序的,因此您可以生成每个块具有固定数量记录的人工分区键:
rec_per_block = df.count() // int(spark.conf.get("spark.sql.shuffle.partitions"))
df_with_block = df.withColumn(
"block", (f.col("index") / rec_per_block).cast("int")
)
Run Code Online (Sandbox Code Playgroud)
并用它来定义框架规范:
w_with_block = Window.partitionBy("block").orderBy("index")
df_lag_with_block = df_with_block.withColumn(
"diffs_col1", f.lag("col1", 1).over(w_with_block) - f.col("col1")
)
Run Code Online (Sandbox Code Playgroud)
这将使用预期的分区数:
df_lag_with_block.rdd.glom().count()
Run Code Online (Sandbox Code Playgroud)
11
Run Code Online (Sandbox Code Playgroud)
大致统一的数据分布(我们无法避免哈希冲突):
df_lag_with_block.rdd.glom().map(len).collect()
Run Code Online (Sandbox Code Playgroud)
[0, 180, 0, 90, 90, 0, 90, 90, 100, 90, 270]
Run Code Online (Sandbox Code Playgroud)
但是在块边界上有许多空白:
df_lag_with_block.where(f.col("diffs_col1").isNull()).count()
Run Code Online (Sandbox Code Playgroud)
12
Run Code Online (Sandbox Code Playgroud)
由于边界易于计算:
from itertools import chain
boundary_idxs = sorted(chain.from_iterable(
# Here we depend on sequential identifiers
# This could be generalized to any monotonically increasing
# id by taking min and max per block
(idx - 1, idx) for idx in
df_lag_with_block.groupBy("block").min("index")
.drop("block").rdd.flatMap(lambda x: x)
.collect()))[2:] # The first boundary doesn't carry useful inf.
Run Code Online (Sandbox Code Playgroud)
你总是可以选择:
missing = df_with_block.where(f.col("index").isin(boundary_idxs))
Run Code Online (Sandbox Code Playgroud)
并分别填写:
# We use window without partitions here. Since number of records
# will be small this won't be a performance issue
# but will generate "Moving all data to a single partition" warning
missing_with_lag = missing.withColumn(
"diffs_col1", f.lag("col1", 1).over(w_unpart) - f.col("col1")
).select("index", f.col("diffs_col1").alias("diffs_fill"))
Run Code Online (Sandbox Code Playgroud)
并且join
:
combined = (df_lag_with_block
.join(missing_with_lag, ["index"], "leftouter")
.withColumn("diffs_col1", f.coalesce("diffs_col1", "diffs_fill")))
Run Code Online (Sandbox Code Playgroud)
获得理想的结果:
mismatched = combined.join(df_lag_unpart, ["index"], "outer").where(
combined["diffs_col1"] != df_lag_unpart["diffs_col1"]
)
assert mismatched.count() == 0
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
9714 次 |
最近记录: |