ds_*_*ner 5 r data.table dcast
试图解决这个问题.假设你有一个data.table:
dt <- data.table (person=c('bob', 'bob', 'bob'),
door=c('front door', 'front door', 'front door'),
type=c('timeIn', 'timeIn', 'timeOut'),
time=c(
as.POSIXct('2016 12 02 06 05 01', format = '%Y %m %d %H %M %S'),
as.POSIXct('2016 12 02 06 05 02', format = '%Y %m %d %H %M %S'),
as.POSIXct('2016 12 02 06 05 03', format = '%Y %m %d %H %M %S') )
)
Run Code Online (Sandbox Code Playgroud)
我想将它转动为这样
person door timeIn timeOut
bob front door min(<date/time>) max(<date/time>)
Run Code Online (Sandbox Code Playgroud)
我似乎无法为dcast.data.table获得正确的语法.我试过了
dcast.data.table(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x) ifelse(type == 'timeIn', min(x), max(x))
)
Run Code Online (Sandbox Code Playgroud)
这会引发错误:
聚合函数应采用向量输入并返回单个值(长度= 1).
我也尝试过:
dcast.data.table(dt, person + door ~ type, value.var = 'time')
Run Code Online (Sandbox Code Playgroud)
但结果却抛弃了我的约会
person door timeIn timeOut
1: bob front door 2 1
Run Code Online (Sandbox Code Playgroud)
任何建议,将不胜感激.TIA
有几种方法可以实现所需的结果dcast
.jazzurro的解决方案在重塑结果之前进行聚合.这里的方法dcast
直接使用,但可能需要一些后处理.我们正在使用jazzurro的数据,这些数据被调整为服从UTC
时区和CRAN版本1.10.0 data.table
.
ifelse
开始工作据Q报道,
dcast(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x) ifelse(type == 'timeIn', min(x), max(x))
)
Run Code Online (Sandbox Code Playgroud)
返回错误消息.错误消息的全文包括使用该fill
参数的提示.不幸的是,ifelse()
不尊重POSIXct
课程(详情见?ifelse
),因此需要强制执行.
同
dcast(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x)
lubridate::as_datetime(ifelse(type == 'timeIn', min(x), max(x))),
fill = 0
)
Run Code Online (Sandbox Code Playgroud)
我们得到了
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
Run Code Online (Sandbox Code Playgroud)
ifelse
ifelse
的帮助页面建议
(tmp <- yes; tmp[!test] <- no[!test]; tmp)
Run Code Online (Sandbox Code Playgroud)
作为替代.遵循这个建议,
dcast(
dt, person + door ~ type,
value.var = 'time',
fun.aggregate = function(x) {
test <- type == "timeIn"; tmp <- min(x); tmp[!test] = max(x)[!test]; tmp
}
)
Run Code Online (Sandbox Code Playgroud)
回报
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
Run Code Online (Sandbox Code Playgroud)
请注意,既不需要fill
参数也不POSIXct
需要强制.
dcast
使用最新版本,dcast.data.table
我们可以提供以下功能列表fun.aggregate
:
dcast(dt, person + door ~ type, value.var = 'time', fun = list(min, max))
Run Code Online (Sandbox Code Playgroud)
回报
# person door time_min_timeIn time_min_timeOut time_max_timeIn time_max_timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:03 2016-12-02 07:06:02 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:03 2016-12-02 06:05:02 2016-12-02 06:05:05
Run Code Online (Sandbox Code Playgroud)
我们可以删除不需要的列并重命名其他列
dcast(dt, person + door ~ type, value.var = 'time', fun = list(min, max))[
, .(person, door, timeIn = time_min_timeIn, timeOut = time_max_timeOut)]
Run Code Online (Sandbox Code Playgroud)
这让我们
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
Run Code Online (Sandbox Code Playgroud)
如上所述,我们正在使用jazzurro的数据
dt <- structure(list(person = c("bob", "bob", "bob", "bob", "ana",
"ana", "ana", "ana"), door = c("front door", "front door", "front door",
"front door", "front door", "front door", "front door", "front door"
), type = c("timeIn", "timeIn", "timeOut", "timeOut", "timeIn",
"timeIn", "timeOut", "timeOut"), time = structure(c(1480658701,
1480658702, 1480658703, 1480658705, 1480662361, 1480662362, 1480662363,
1480662365), class = c("POSIXct", "POSIXt"))), .Names = c("person",
"door", "type", "time"), row.names = c(NA, -8L), class = c("data.table",
"data.frame"))
Run Code Online (Sandbox Code Playgroud)
但强迫时区到UTC
.
同
dt[, time := lubridate::with_tz(time, "UTC")]
Run Code Online (Sandbox Code Playgroud)
我们有
dt
# person door type time
#1: bob front door timeIn 2016-12-02 06:05:01
#2: bob front door timeIn 2016-12-02 06:05:02
#3: bob front door timeOut 2016-12-02 06:05:03
#4: bob front door timeOut 2016-12-02 06:05:05
#5: ana front door timeIn 2016-12-02 07:06:01
#6: ana front door timeIn 2016-12-02 07:06:02
#7: ana front door timeOut 2016-12-02 07:06:03
#8: ana front door timeOut 2016-12-02 07:06:05
Run Code Online (Sandbox Code Playgroud)
独立于当地时区.
这将是实现目标的一种方式.我修改了你dt
并创建了以下数据集.对于每个人,我寻找最短时间timeIn
和最长时间timeOut
.然后,我申请dcast()
了结果.
# person door type time
#1: bob front door timeIn 2016-12-02 06:05:01
#2: bob front door timeIn 2016-12-02 06:05:02
#3: bob front door timeOut 2016-12-02 06:05:03
#4: bob front door timeOut 2016-12-02 06:05:05
#5: ana front door timeIn 2016-12-02 07:06:01
#6: ana front door timeIn 2016-12-02 07:06:02
#7: ana front door timeOut 2016-12-02 07:06:03
#8: ana front door timeOut 2016-12-02 07:06:05
library(data.table)
dcast(
dt[, .SD[(type == "timeIn" & time == min(time))|(type == "timeOut" & time == max(time))], by = person],
person + door ~ type)
# person door timeIn timeOut
#1: ana front door 2016-12-02 07:06:01 2016-12-02 07:06:05
#2: bob front door 2016-12-02 06:05:01 2016-12-02 06:05:05
Run Code Online (Sandbox Code Playgroud)
数据
dt <- structure(list(person = c("bob", "bob", "bob", "bob", "ana",
"ana", "ana", "ana"), door = c("front door", "front door", "front door",
"front door", "front door", "front door", "front door", "front door"
), type = c("timeIn", "timeIn", "timeOut", "timeOut", "timeIn",
"timeIn", "timeOut", "timeOut"), time = structure(c(1480658701,
1480658702, 1480658703, 1480658705, 1480662361, 1480662362, 1480662363,
1480662365), class = c("POSIXct", "POSIXt"))), .Names = c("person",
"door", "type", "time"), row.names = c(NA, -8L), class = c("data.table",
"data.frame"))
Run Code Online (Sandbox Code Playgroud)